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Abstract—Smart applications, including Internet of Things
(IoT) and Big Data analytics, are traditionally hosted by
cloud infrastructures, which can result in high latency and
cost beyond users expectation. Edge computing has emerged
as a paradigm that can alleviate the pressure on clouds by
delegating parts of the computation to devices in the edge
of the network, at closer proximity to end users and IoT
devices. In this paper, we discuss a smart application, built
on top of mobile edge computing concept, to enables users to
measure and analyse their food intake and support nutritional
decision-making. The approach utilizes mobile edge computing
to offload application computations and communications to
the edge, thus saving battery life, increasing the processing
capacity, and improving user comfort. In order to develop
this system, we propose a loosely coupled architecture for a
smart food scanner and then implement it using various IoT
sensors. The performance evaluation results reveal that the
implemented system can be used as an interactive appliance
by users with minimum dependency and usage of their mobile
phones.

1. Introduction

The last decade witnessed the consistent growth of cloud
computing as the platform of choice for existing and emerg-
ing distributed applications, ranging from multi-tier web
applications hosting anything to CPU-intensive, complex
scientific applications [1]. The success of cloud platforms
are attributed to its capacity to support virtually infinite
amount of resources for applications on demand, and the
native support for highly reliable and elastic applications
when solutions are appropriately architected. However, re-
cent technology trends started to expose the limitations of
clouds to host smart applications. Innovations in the area
of Internet of Things (IoT) [2], Big Data [3], and deep
learning [4] encouraged the development of smart applica-
tions that expose data ingestion as a major bottleneck of
centralized cloud solutions.

The large volume of data generated by IoT sensors can
put a considerable pressure on clouds and depending on the
pricing model of cloud and Internet providers, result in large
application costs. Conversely, deep learning models demand
large datasets for accurate classification, which impacts data

transfer (to move the datasets to the cloud) and computing
costs.

Moreover, the fact that cloud application are hosted on
large scale, centralized data centers that usually are located
far from users, add another issue of latency-induced delays
in response time, which affect user experience and may have
adverse effects on the application success and profitability.
For example, content delivery network provider Akamai
estimates that a delay in 100 ms in the application response
time result in a loss of revenue in a drop of conversion rate
of 7% [5]. Thus, it is clear that new demands that arose
since cloud computing emerged are not suitably addressed
by clouds. Zhang et al. [6] makes a more comprehensive
analysis of the limitations of cloud platforms, with emphasis
on its support for IoT. They identified seven key issues with
cloud platforms that have a large impact on IoT applications.
Aligned with our earlier discussion, network latency and
bandwidth are among those identified issues, and so are
scalability and Quality of Service (QoS) guarantees. Re-
cently, edge computing [7], in which computing and storage
nodes are placed at the networks edge in close proximity
to users, has grown dramatically. This technology promises
to deliver responsive computing services, scalability, privacy
enforcement and the ability to mask transient cloud outages.

In parallel to the advances in cloud computing, dra-
matic improvements in mobile computing transformed mo-
bile phones to complete computing systems with enough
processing power and memory resources to host smart ap-
plications. However, battery life is the main factor limiting
smartphones to perform computing-intensive tasks. The field
of Mobile cloud computing (MCC) [8] emerged to enable
mobile devices to outsource computing tasks to the cloud.
Other approaches involved exploring edge devices as the of-
floading destination of mobile computations—what became
known as mobile edge computing (MEC) [9].

Because part of the computation (and related data com-
munication) that would otherwise occur in the cloud is now
occurring at the edge of the network in proximity to end-
users (or IoT sensors), latency, and the overall network data
transfer, can be reduced considerably with edge computing,
which impacts on response time, Quality of Service, and
data transfer costs. Furthermore, it also has an extra benefit
of limiting the amount of data going to cloud providers,
which can also have security and privacy benefit for users.
One approach commonly used for edge computing is to



outsource to the cloud heavy computation (as in general
the edge is assumed to be resource-constrained) such as
deep learning training (as in the work by Li et al. [10])
and other latency-insensitive tasks, whereas the remainder
of the computation occurs in the edge.

In this paper, we discuss a smart application, built on
top of mobile edge computing concept, to enables users to
measure and analyse their food intake and support nutri-
tional decision-making. The approach utilizes mobile edge
computing to offload application computations and commu-
nications to the edge, thus saving battery life, increasing the
processing capacity, and improving user comfort. This edge
application was enabled by our initial findings when investi-
gating a solution for non-invasive food intake detection [11].
After investigation on the particular interfaces, elements, and
context-independent components in our early application,
we were able to design the proposed application to leverage
edge computing. In particular, the contributions of this paper
are the following: (i) An edge-based computing system that
is able to aggregate heterogeneous IoT devices and edge
resources with powerful cloud resources in the backend to
support non-invasive capture of nutritional information data;
and (ii) an implementation and evaluation of the proposed
system, which reveals the capabilities of edge computing in
the area of smart applications.

The rest of the paper is organized as follows. Section 2
presents a comprehensive review of related work in edge
computing frameworks and systems supporting nutrition
information capture. Section 3 discusses the motivation for
the system, its requirements and the proposed architectural
and system implementation. Section 4 presents an evaluation
of the implemented system and results of service time
and power consumption. Conclusions and future works are
discussed in Section 5.

2. Related Work

We organize our related work based on key themes
presented in this paper, namely edge computing frameworks
and current approaches for nutritional information capture.

2.1. Edge Computing Frameworks

A number of frameworks for edge computing have been
proposed in the literature [12]–[17]. Such frameworks target
some “general” model for Edge computing, without consid-
ering specific applications. Approaches vary regarding the
nature of edge devices and the degree of ownership and
control users or Cloud providers have over edge or IoT
devices (data sources). Although some of them have tar-
get application areas providing guidance over architectural
elements of the framework (such as medical cyber-physical
systems [13] or vehicular networks [14]), in common across
these approaches is also the fact that little attention is given
to the applications that need to be supported; applications are
heavily abstracted, making hard to map specific applications
to the scenarios proposed.

Some frameworks recently proposed [18]–[20] target
specifically mobile edge platforms, and they usually address
the specific issue of offloading the computation from mobile
devices to the edge or the cloud. Our work also contain
elements that are relevant in this context, as some existing
approaches for food detection were developed as mobile
applications, whereas our approach perform the same work
on the edge and the cloud.

As a result of such overgeneralization of applications
by existing frameworks, existing Edge applications do not
leverage them, and usually embed their own solution for
integration of the diverse layers of the stack. Nevertheless,
a few applications emerged in the area of health and well-
being. The closest application to our approach is proposed
by Liu et al. [21]. Such application consists of a deep
learning-based food recognition system deployed on the
edge. At the user side, a mobile app captures the photo
of a food. The mobile phone itself is the Edge device,
which carries out preprocessing and image segmentation.
The system leverages the cloud for training a convolutional
Neural Networks for food recognition and for classification
of the photos segmented by the Edge device. Our approach
focus not only on the food detection, but also on the estima-
tion of nutritional information based on data collected from
complementary sensors.

2.2. Approaches for Nutritional Information Cap-
ture

Given the increase in food-related health problems [22],
there are several research to develop new techniques to
enable users to measure and analyze their food intake, which
we review them briefly in the following.

2.2.1. Food Intake Detection. Approaches in this research
area focus on detecting whether user activities could be
classified as eating, without attempting to recognize what
types of foods are consumed. Based on the observation of
user daily activities, systems in this category are able to
identify users’ habits and can provide some advice about
their food habits in order to assist in healthcare [23].

As a method that applies biting detection, Scisco et
al. [24] introduces an approach where users wear a sensor
(gyroscope) on their wrists with the purpose of detecting
biting movement as a way of detecting food consumption.

Farooq and Sazonov [25] proposed an approach for
detection of chewing movement. An accelerometer, a hand
to mouth sensor, and a piezoelectric sensor are integrated
into a wearable device, which is used to collect signals
from the user’s movements. Data analysis is based on pattern
recognition using different assemble classifiers. Kalantarian
et al. [26] employed a piezoelectric sensor equipped in a
wearable necklace to detect the movement of the throat and
determine whether users are eating or not. The device is
able not only to detect food intake but also to provide an
estimation on the volume of food consumed and to classify
simple types of food.



Cheng et al. [27] focus on detecting certain actions
based on the effect of capacitance from electrodes installed
inside user’s clothes. The approach is able to detect different
activities, including not only swallowing and chewing foods
but also talking or head movements.

Limitations of these approaches are twofold. First, they
can only indicate whether users are eating or not; these
systems cannot detect what is being consumed by users.
Second, these approaches require users to wear devices that
can be invasive or uncomfortable, and thus can limit their
interest in adopting the approach. Our proposed approach,
on the other hand, has non-invasiveness as one of its key
design principles, what we expect may encourage users
adoption and the success of the application.

2.2.2. Nutrition Monitoring Systems. Research in this
category aims at developing systems that can detect what
is being consumed by users, rather than just determining
whether users are eating or not. Thus, these systems have
more potential to generate information that can be relevant
for dietary intake management. Approaches related to our
work focus on automatically monitoring and detecting user
activities by using IoT sensors.

In recent years, there have been a variety of proposed
approaches in developing nutrition monitoring system with
the help of sensor devices that are attached to the human
body to obtain more reliable information from users and
improve the accuracy in dietary assessment [23]. In such
Wearable approaches, there are many sensing prototypes
proposed which are applied in different position of the
human body such as ears [28] and teeth [29]. Sun et al. [30]
proposed a wearable device called eButton that looks like
a decorative button but contains various sensors, including
two cameras, a UV sensor, a proximity sensor for motion
observation of hand or arm, and a GPS for detecting the
current geographical location of the user. This wearable
device is capable of detecting if the user is having a meal
and can capture and store images of the food. However,
this system raises privacy issues due to the problem of
monitoring and pictures capture and storage without users’
awareness.

Environmental approaches are based on sensors that
are not attached to the human body, hence reducing the
intrusiveness of the system. However, the accuracy of these
systems is usually not high and they are difficult to be used
in the practice [23]. Gu and Wang [31] and Zhou et al. [32]
developed solutions that are examples of such environmental
sensors for monitoring nutrition of users based on consumed
foods. Zhou et al. [32] proposed a system for dietary assess-
ment using a smart table cloth that measures the volume
of foods and recognizes the type of food based on eating
behavior of users with approximately 80% of accuracy.

In Standalone approaches, sensors used in nutrition
analysis system are neither attached to the human body
nor rely on the surrounding environment. In this approach,
some external devices will be integrated with smartphones to
enable users to directly do the measurement of food items
and receive the nutritional information [33]. For instance,

users can use a handheld NIRONE spectrometer sensor from
Spectral Engines1 to receive a fast response about nutritional
values of food items. This approach only adopts limited
number of sensors which mainly suitable for homogeneous
foods.

Limitations of these approaches include high intrusive-
ness of wearable approaches and low accuracy of environ-
mental approaches, which motivated us to look for more
holistic solutions that apply standalone approaches and het-
erogeneous food recognition to increase accuracy without
being intrusive to users.

2.2.3. Food Recognition. This section discusses research
in food recognition that can be applied in the nutrition
monitoring area. According to the definition of food com-
puting from Min et al. [34], this area of research can be
separated into three different types of approach in detecting
and recognizing foods, including single label approaches,
multiple labels approaches, and sensors approaches.

Single label approaches focus on the simplification in
the real-world scenario, which considers only one food per
image input. Using this approach, Yang et al. [35] proposed
a new approach for food recognition by measuring the
values of pairwise visual features. These values are then
represented in a histogram and converted to vectors with
multiple dimensions for the purpose of classification. By
applying appropriate classifiers on these vectors, nearly 80%
of accuracy was achieved, which was better than existing
methods.

Multiple labels approaches address the issue that usually
users take only one picture of their meals that includes all
foods as the input for the nutrition application, and thus
single label approaches, which expect only one food in the
image, cannot handle these cases. In the area of multiple
label approaches, Matsuda et al. [36] proposed a method
for classifying foods in an image with multiple food items
by detecting the region of each candidate. After testing on
ten food items, the method achieved approximately 55.8%
of accuracy. Kagaya et al. [37] proposed a method using
convolutional neural networks (CNN) for recognizing foods.
Experiments presented did not allow a direct comparison
between approaches.

Sensors and mobile based approaches leverage the
fast development of mobile computing and IoT in recent
years, which enabled food recognition not to rely solely
on computer vision anymore. Besides computer vision ap-
proaches using mobile applications with deep learning tech-
niques [38], [39], IoT sensors also join in this field as a dif-
ferent source for food recognition approaches. For example,
based on the idea of acoustic recognition, Gao et al. [40]
proposed an application named iHearFood with the purpose
of detecting the activity of chewing foods based on sounds
captured by Bluetooth headsets. Depending on the categories
of sounds, the system can also recognize what type of food
users are consuming. In order to accomplish that, authors
also proposed a technique for food classification based on

1. https://www.spectralengines.com/



deep learning, which results in accuracy between 77% and
94%. Mirtchouk et al. [41] proposed a method that combines
both acoustic-based and motion-based approaches to detect
and recognize foods. The proposed method uses as input
chewing sounds and movements from the wrist to improve
the accuracy of food classification. As a result, by testing
on 40 different food items, the method achieved accuracy
of around 82.7%.

As discussed in the introduction, approaches based on
mobile computing and IoT have the disadvantage of being
constrained by the resources available in the mobile devices.
Although smartphones are powerful enough to handle the
required computation of food recognition, this occurs at
a cost in terms of battery life, what can hinder adoption
of the approach. Edge computing helps in alleviating this
issue, and therefore it is explored in this paper. Our previous
approach [11] employed a number of IoT sensors and cloud
processing for monitoring nutrition of users, but without
utilizing edge to reduce latency and costs related to cloud
usage. Based on the findings of this early architecture, the
system discussed in the next sections leverages edge to
increase the capabilities of the system.

3. The Proposed System

Healthy eating habits are considered a major factor for
people to maintain a healthy life. Unawareness of what
constitutes healthy eating can cause health problems, obesity
or overweight. According to Nordström et al. [42], the
number of people becoming obese is increasing every day
due to their unhealthy eating habits, and these habits are
considered one of the main factors for various diseases such
as cardiopathy and diabetes, which results in major costs in
the healthcare system.

Because of that, there is a need for nutrition monitoring
systems that maintain and improve people’s health by moni-
toring what types of foods they are eating daily or in a fixed
period. In order to improve public health, these systems need
not only to monitor and analyze different types of foods, but
also provide necessary advice to users about their meals.
With these considerations, we developed an initial nutrition
monitoring system [11]. The start point of this approach is
a Smart Scanner where users deposit their dish with the
food. The Smart Scanner contains a smart scale, and an
array of cameras. It recorded the weight of the dish and
uploaded the photos and a timestamp to a cloud server. The
photos enabled a 3D model of the dish to be asynchronously
generated on a High Performance Computing (HPC) system
in the backend, and this model was also stored in the cloud
server.

Nevertheless, we identified a number of limitations in the
early design, namely: (i) the 3D model requires expensive
software and hardware to compute, and delivered little value
in terms of the information provided. (ii) it required manual
identification of the food, as there was no step to detect
the food being consumed; and (iii) at the sensor layer of
the solution, it was heavily dependent on the particular
proprietary method for interaction with sensors. New sensors
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Figure 1. System architecture.

required new code to adapt the sensor to the Smart Scanner,
rather than relying in standard communication models.

With the above observations at start point, we realized
that a more generic solution required also a better abstraction
in the sensor layer, removal of HPC resources of the solu-
tion, and methods for capture of more information. These
considerations guided the requirements and design of the
proposed system, as detailed in the rest of this section.

3.1. Requirements and Design Considerations

Our Smart Nutrition Monitoring System has been de-
signed with the following requirements in mind:

• The system must collect nutritional information from
foods and store in a persistent database. To enable
a detailed analysis from user data over time. This
data must be suitable to be consumed by end users
directly, but could also aggregated in reports that are
relevant for dietitians and other health practitioners,

• The system must not require any wearable sensor,
either in the clothes or in the user’s body.

• Other than authentication information, no other di-
rect input from the user should be required.

• Minimization of the use of cloud backend services
to reduce ongoing costs when operating the solution.

• Standardized interfaces should be used as much as
possible to facilitate extensibility of the solution.

Some of the points above were supported by our original
design [11], and therefore were kept. This includes the use
of a Smart Scanner for collection of food data (although
a different design and configuration of sensors has been
used at this time), use of RESTful APIs supporting the
backend, the use of Raspberry Pi boards to aggregate the
data of the sensors, and the use of a mobile phone to
provide authentication to the platform. However, a re-design
was required to enable the use of standards at the sensor
layer, to enable automatic food identification and to leverage
local computing capability as much as possible while also
connecting to a cloud backend to provide complementary
processing capacity, thus transforming the solution in a
edge computing application providing nutrition monitoring
service. Next, we detail the architecture of such system.
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3.2. System Architecture

Figure 1 presents the proposed loosely coupled architec-
ture based on mobile edge computing.

The edge service is the central component of the ar-
chitecture. It interfaces with mobile devices, smart scanner,
and the cloud services. Internally, this service contains two
components. The first is the IoT Interface module, whose
role is to interface with sensors in a number of existing
interfaces (both wireless such as Bluetooth and MQTT,
and wired such as USB). The IoT devices interact with
the second component, the edge server. The edge server is
responsible for authorizing users to scan, aggregate input
from sensors and submit for the cloud for storage, and
trigger the food recognition and analysis.

The cloud service supports two types of activities. The
first are activities that are computationally demanding to
be executed in mobile devices or in the edge, but at the
same time are not latency-sensitive, such as the machine
learning for food detection. The second type of activities is
related to data storage and visualization. The nutrition server
is responsible to communicate to the edge service and store
the data in the database. Machine learning component is a
model for food recognition where it uses the food image as
an input and provides the list of ingredients as the output
to the nutrition server. These ingredients will be translated
to the nutritional information using API calls to external
nutrient databases.

The system architecture has interface to the end users
through different services. The main interface is a mobile
application which enabling registration and access to the
smart scanner. The user authentication will be handled using
edge service’s API through the mobile app. The other com-
ponent of the system interface is a web application which
provides data visualisation to users.

3.3. System Implementation

Figure 2 presents the system implementation based on
the proposed architecture. It is broadly organized around
three services: front-end service, cloud service, and edge
service. These services interact which each other via REST-
ful APIs, which are explained in the following.

Frontend service: our frontend service has been imple-
mented in the form of a mobile app. It has been implemented
as an Android native app for the purposes of validation.
As it needs to communicate with the edge service via
Bluetooth connection, the app requires access to the device’s
Bluetooth, and other secondary permissions associated with
that (such as coarse location information). Bluetooth was
preferred over WiFi to enforce physical proximity between
users and edge devices, as discussed later. In addition, a web
application using HTML 5 and CSS has also been devel-
oped to support data visualization for users using standard
browsers.

Cloud service: it implements four core components,
namely Nutrition server, Machine learning, Database and
Visualization component. The Nutrition server stores and
processes data received from the edge service, thus enabling
tracking of user nutritional information and generation of
reports, which can be used by the Visualization compo-
nent. It is also responsible for transferring data to the
machine learning component for food recognition. Finally,
this service is also responsible for storing user data. Besides
offering RESTful APIs for interaction, the Nutrition server
can also push notifications to the frontend service’s mobile
App to provide nutritional information to the user. This
service has been implemented using Spring MVC2 and
Java. The database is MySQL. Information about users that
stored in the database at registration time (can be updated)
are name, email, date of birth, gender, weight, and height.
The visualisation service is implemented based on Node.js
platform. The user interface is developed using React and
Chart.js both available JavaScript libraries to create a graph-
ical interface.

The machine learning component has been implemented
using TensorFlow3. The best and largest publicly available
dataset that we can utilize to establish and develop accurate
ingredients recognition model is the Recipe1M dataset from
Salvador et al. [43] which contains one million structured
cooking recipes and their images. We developed a workflow
including several Phyton scripts to generate a new dataset
with food images and list of ingredients from their recipes.
We trained the model using different random subsets of
100, 1000, 10000 images/recipes pairs from the new dataset.
Since the dataset ingredients mean was calculated to be 9
and also reported in Salvador et al. [43], so when selecting
a training subset of images with fewer ingredients, the
model can detect the ingredient with high accuracy. We then
noticed that, as we increased the number of ingredients the
accuracy decreases. To investigate this further and in details,
we first filtered the recipes from any numbers, characters
and unnecessary content. This slightly improved the accu-
racy, but still requires further analysis and more advanced
methods and algorithms to be used or developed for better
recognition of the image details, especially for dishes with
more or close to the mean number of ingredients.

Edge service: this service is implemented with a Rasp-

2. https://spring.io/
3. https://www.tensorflow.org/



berry Pi serving as the computing power resource for the
service. Sensors available in the current implementation
include a camera that receives the signal from the edge
server to take pictures of foods from users, a smart scale
device that measures the weight of foods after receiving the
signal from the edge server, and two molecular sensors [33]
(i.e., SCiO Sensor and NIRONE Sensor) which are used for
detecting specific type of food material such as raw meat
or cooked meat. The purpose of the molecular sensor is
to provide further detail and improve the accuracy of food
recognition and nutrition analysis process, and it requires
access to an external API to complement its operation.
Regarding communication protocols, our system currently
supports MQTT and Bluetooth, which are widely supported
across sensors. Because the sensors chosen to be added
to the system may not support MQTT or Bluetooth, the
system also supports extra Raspberry Pi devices that can be
used as a bridge between the chosen sensor and the edge
server. When this option is used, the sensor communicates
with the bridging Raspberry Pi via Bluetooth (or sometimes
the sensor is directly attached to the edge server via one
of its interfaces) and the bridging and the edge server
communicate via MQTT.

One way to improve the system security was requiring
users to be close to the edge device to be allowed to
trigger the food scanning. Therefore, we rejected a RESTful
API access via wireless networks in favor of Bluetooth-
based access for user authentication and triggering scanning
process.

Food Scanning process: The whole process of food
scanning and data acquisition occurs as follows. Initially, the
user deposits the dish containing the food to be measured
in the Smart Scanner. Then, using the provided mobile
app, the user authenticates with the service using Bluetooth
(to restrict the distance between the client and the Smart
Scanner). When the user is authenticated, it can trigger the
scan process with the app. When the process is triggered,
information from the sensors are collected by the edge server
and user will be notified to remove the dish. The collected
data will be sent to the cloud service for long term storage
and analysis. At the same time, a photo taken at the Smart
Scanner is uploaded by the edge server to the cloud for
food recognition purposes. Once the image is recognized,
the cloud service queries the nutrition API (FatSecret4) to
obtain nutritional information from the food. We also use a
molecular database5 to extract nutritional information from
the molecular sensors. The final results will be sent back to
the user mobile app via push notification. Finally, data from
the sensors, the photo, and the nutritional information will
be stored in the database. Users (or dietitians) can access
the data via a web application, which can generate relevant
visualizations of the collected data.

4. https://www.fatsecret.com
5. https://www.consumerphysics.com/

TABLE 1. CONFIGURATION SETUP.

Item Module Specifications
Mobile Android Smartphone 1.9Ghz octa-core Exynos CPU, 2GB RAM
Edge Raspberry Pi Model B 1.4Ghz quad-core ARM CPU, 1GB RAM
Cloud AWS EC2 Instance t2.medium, 2 vCPUs, 4GB RAM
ML AWS EC2 Instance p2.xlarge, 4 vCPUs, 1GPU, 61GB RAM

Sensor 1 Camera Raspberry Pi 8MP Camera
Sensor 2 Scale SITU Smart Scale
Sensor 3 SCiO Sensor Molecular Sensor 700-1100nm
Sensor 4 NIRONE Sensor Molecular Sensor 1750-2150nm

4. Performance Evaluation

In this section, we present the results of performance
evaluation to measure service time and power consump-
tion in the implemented system. The configuration setup
and specifications of modules in the experiments are listed
in Table 1. We used Amazon Web Services (AWS) for
cloud services including an EC2 instance for the nutrition
server and a GPU instance for machine learning (ML). The
communication network between mobile and the edge is a
Bluetooth connection and 30Mbps WiFi connection between
edge and cloud services.

We have conducted two sets of experiments. In the first
set, we measured the service time in each components of
the implemented system to show how it can be responsive
to users. In the second set, we measured the power con-
sumption on the mobile phone using Trepn Profiler Tools6

as the primary interface to the user. Each experiment has
been conducted 30 times and average results are reported.

Results of the service time experiments are reported
in Table 2 and Table 3 for edge and cloud components,
respectively. As can be seen in Table 2, scanner time is the
total time for the edge component to collect the information
from various sensors. Since we used multi-threading model
in the edge, the scanner time is much smaller than the
aggregated data collection time of all sensors. Thus, the
total time that a food item needs to be kept in the Smart
Scanner is less than 10 seconds. We also measured the total
turnaround time on the mobile app which is 10.81 seconds,
which is a reasonable time for users to scan the food before
start eating. It should be noted that sending data to cloud is
not included in the scan time as this occurs asynchronously
in the background.

As soon as the cloud component receives the scan data,
it uses the machine learning model for food detection and
then external APIs to extract the nutrition information of
each particular ingredient item. For these experiments, we
trained the model with 1000 sample images and then used
100 testing images for evaluation of the model. We observed
accuracy of 83% for single ingredient detection. The infer-
ence time was about 2.15 seconds as listed in Table 3. The
time for model training is not relevant in this experiments
because it occurs in the background as a batch operation, and
the training is completely independent from the inference
(i.e., once the training completes, it can be used for an

6. https://trepn-profiler.en.uptodown.com/android



TABLE 2. EDGE SERVICE TIMING (SECONDS).

Scanner Camera Scale SCiO Sensor Upload to Cloud
9.85 3.35 6.92 4.79 11.26

TABLE 3. CLOUD SERVICE TIMING (SECONDS).

Machine Learning SCiO Analysis FatSecret API DB update
2.15 3.46 0.45 3.35

TABLE 4. MOBILE POWER CONSUMPTION (WATT).

Mobile Edge Mobile Cloud
2.80 8.11

arbitrary amount of time until it is updated). Depending
on the type of the food item, we use SCiO Cloud API
or FatSecret API to get the nutrition information (i.e, fat,
protein, hydrocarbon) and inserting them into the database.
The total time for the cloud service is 9.41 seconds which is
how long it takes for a user to receive a notification including
the nutritional information on the mobile app.

In the second experiment, we measured the power con-
sumption of the mobile phone in two different application
configurations including mobile edge and mobile cloud. In
the mobile edge configuration, as depicted in Figure 2, we
have a lightweight mobile app which has a user interface to
users and capability to communicate to the edge service. In
the second configuration, we removed the edge service and
ran the whole service on the same mobile phone as a mobile
cloud configuration. Results of these measurements are re-
ported in Table 4 where it can be seen that the mobile cloud
configuration consumes 3 times more power than mobile
edge. This reveals that, while mobile phones are able to run
various applications, power consumption remains as one of
their limitations. So, mobile edge computing can address this
issue by offloading the computations and communications to
the edge. Moreover, this could help users to use less storage
on their mobile phones and improve resource efficiency in
long term.

The last but not least, edge services will enable users to
have more flexibility and scalability in terms of applications
and services. For the smart food scanner, we adopted several
sensors which interfacing them with a mobile phone is
challenging, or even impossible for different versions of
phones. Mobile edge computing enables us to improve and
modify the food scanner system with no impact on user
devices and their capabilities.

5. Conclusions and Future Work

In this paper, we designed and implemented a novel
smart nutrition monitoring system using a food scanner. We
proposed a system architecture based on heterogeneous IoT
sensors and mobile edge computing for food data collection
and analysis on the cloud. We implemented the system

using several sensors to demonstrate that this technology is
practical, non-invasive, and has minimum participants’ bur-
den. Moreover, the developed system consumes much less
mobile resources in terms of computation, communication
and storage so could be extended independent of mobile
phone capabilities. We aim to continue working on this
system by developing new machine learning models such
as modified or special segmentation deep learning models
and using Region of Interest for training the system for
better accuracy to detect dishes with different number of
ingredients. Implementing the cloud services using Server-
less functions [44] will be another future work. We also aim
to add a voice-controlled interface to the system so users are
able to communicate to the system even without using the
mobile phones.
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