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Abstract

With the increasing functionality and complexity of
distributed systems, resource failures are inevitable. While
numerous models and algorithms for dealing with failures
exist, the lack of public trace data sets and tools have
prevented meaningful comparisons. To facilitate the de-
sign, validation, and comparison of fault-tolerant models
and algorithms, we have created the Failure Trace Archive
(FTA) as an online public repository of availability traces
taken from diverse parallel and distributed systems. Our
main contributions in this study are the following. First,
we describe the design of the archive, in particular the
rationale of the standard FTA format, and the design of
a toolbox that facilitates automated analysis of trace data
sets. Second, applying the toolbox, we present a uniform
comparative analysis with statistics and models of failures
in nine distributed systems. Third, we show how different
interpretations of these data sets can result in different
conclusions. This emphasizes the critical need for the
public availability of trace data and methods for their
analysis.

I. Introduction

With the increasing functionality, complexity, and scale
of distributed systems, resource failures are inevitable.
For scientific applications, failures can result in frequent
performance degradation or in the worst case, premature
termination of execution, or data corruption and loss. For
commercial applications, failures can cause the violation
of service-level agreements, and cause a devastating loss
of customers and revenue [10].

A plethora of models and algorithm exist for analyzing,
predicting, and resolving failures [6], [21], [15], [12],
[20], [2], [1]. At best, these models and algorithms are
evaluated using failure traces of a single or limited number
of systems. The trace data sets or methods or models based
on them are rarely publicly available. Moreover, studies

based on failure traces often use traces of different systems.
The result is the fragmentation of failure models and fault-
tolerant algorithms, as their comparison or cross-validation
on different types of systems is difficult if not impossible.

To remedy this situation, we have created the Failure
Trace Archive (FTA), which comprises public availability
traces of parallel and distributed systems, and public tools
for their analysis. The community archive approach has
been recognized as useful for sharing data in a common
format, and has been employed by several communities in
the computing domain. The parallel computing community
has built the Parallel Workloads Archive [8], the grid
computing community has created the Grid Workloads
Archive [13], for instance. Efforts such as the Repository
of Availability Traces [9], the Computer Failure Data
Repository [22], and the Desktop Grid Failure Traces [15]
have led to making failure-related data public, but did
not establish the premise of a community archive for
distributed computing systems. In particular, they did not
build a common format for storing failure-related data, and
failed to obtain and publish a sufficient number of data sets.
In contrast to these early efforts, our main contribution is
threefold:

• We design a public failure trace archive, creating a
standard format for failure traces, and a toolbox that
facilitates comparative trace analysis (Section III).

• Using the toolbox, we present uniform statistical anal-
yses and failure models for nine diverse distributed
systems (Section IV);

• We show that differences in the interpretation of fail-
ures can change significantly the models and statistics
derived from traces (Section V).

II. Background

Throughout this work, we follow the basic concepts
and definitions associated with system dependability as
summarized by Avizienis et al. [3]. The basic threats
to reliability are failures, errors, and faults occurring in
the system. A failure is an event in which the system



fails to operate according to its specifications. A failure
is observed as a deviation from the correct state of the
system. We term the continuous period of a service outage
due to a failure as an unavailability interval. A continuous
period of availability is called an availability interval.

An error is part of the system state that may lead to a
failure. Some errors may not be visible from the outside
of the system, that is, they may not reach the external state
of the system and thus cause failures; such errors are said
to be dormant. Errors that do cause failures are said to be
active. The root cause of an error is a fault.

III. Overview of the Failure Trace Archive

The Failure Trace Archive (FTA) can be used in many
ways. First, the FTA allows the comparison and cross-
validation of a fault-tolerant model or algorithm across
identical trace data sets. Second, it allows the evaluation
of the generality of a model or algorithm across different
types of resources (in terms of reliability or user base,
for example). Third, it allows for the evaluation of the
generality of a failure trace, i.e., to determine whether
measurements are biased to a particular platform or mid-
dleware. Fourth, it allows for the determination of which
trace data set is most interesting or applicable for a given
algorithm or model. Fifth, it allows for the analysis of the
evolution of availability in different systems across long
timescales. Sixth, it allows for the integration of failure
models with other types of models (such as workloads).
Seventh, it facilitates the incorporation of traces with a
common format into fault simulators or emulators for
model or algorithm evaluation.

A. Archive Format

In our experience, the majority of time in measurement
and modeling studies is spent in parsing and interpreting
the measurements. To accelerate this processing and anal-
ysis for others, we have parsed and interpreted 9 diverse
distributed systems in a standard format. Here we describe
the rationale of the format.

The majority of our collection of traces record times
of failures for resources, and contain an alternating time
series of availability and unavailability intervals. As such,
our format is resource-centric (versus job-centric or user-
centric) with respect to failures of individual nodes or
components of nodes, such as memory, CPU, or hard disks.
We believe the format is also applicable to failures of
services deployed on top of resources. However, our format
does not explicitly describe higher-level failures, such as
job failures, though potentially the FTA format could be
extended for this type of failure or perhaps combined
with the Grid Workload Archive format. Measuring and
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Fig. 1. Overview of the FTA structure.

understanding the relationship between lower-level failures
(for example, of nodes or components) to higher-level
failures (for example, jobs) is an area for future research.

The trace format is organized hierarchically as follows:
Platform→ Node→ Component→ Event Trace. Figure 1
depicts the structure of the FTA, where boxes represent
database tables. We summarize the meaning of each table
below. Table names are shown in bold.

• A platform contains a set of nodes. Examples of a
platform include desktop PC’s at Microsoft, or nodes
in the LANL clusters.

• A node contains a set of components, which is a
software module or hardware resource of the node.
Each node can have several components (e.g. CPU
speed, available memory, client availability), each of
which has a corresponding trace.

• The node_perf describes the node performance, as
measured through benchmarks, for example.

• A component describes attributes of a software mod-
ule or hardware resource of a node.

• A creator is the person responsible for the trace data
set. This table stores details about data copyright, and
about projects and published material that use the
data.

• An event_trace is the trace of an event, with all of
corresponding timing information (e.g. start and end
times).

• The event_state is the state corresponding to an
event_trace. For example, for CPU availability, the
event_state could be the idleness of the CPU. For host
availability, it could be the monitoring information
associated with the event.

In addition, we have codes that correspond to different
types of components (for example, memory, CPU, hard
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disk), events (for example, availability or unavailability),
and event reason codes (for example, disk crash and CPU
overheating).

The best test of a format is its application to real data
sets for different types of systems with different types of
failures measured in different ways. We applied this format
to nine systems ranging from desktops on the Internet to
supercomputing clusters. The types of failures included
host, CPU, and even service failures. These failures were
measured using a variety of methods, such as periodic
probing, event notification, load measurement, and even
human observation. Given that all of these data sets could
be presented in this format with ease, we believe the format
is good first step towards a standard. To anticipate future
extensions of the format, we have several generic tables
with double and string field that can contain additional
new information should it arise.

B. FTA Toolbox

We implemented a FTA toolbox to facilitate the com-
parative analysis of failure traces (see Figure 2). The
toolbox is implemented in Matlab, and uses several open-
source Matlab packages, such as the Mysql and DataTable
packages.

The toolbox takes as input four functions for initializ-
ing, querying, processing, and finalizing the data analysis.
The initialization and query stages allow one to extract the
necessary data from traces located in the MySQL database
into Matlab in-memory data structures. By contrast to
loading entire data sets into memory from large files, this
method allows one to extract into memory only the data
that is needed for processing.

Initialization and querying is separated from processing
to allow expensive initialization queries to be conducted
only once, after which any amount of processing can be
done. Also this separation allows the same initialization
and queries to be used for many different processing
functions. This facilitates code reuse.

The results of initializing and querying are then passed
to the processing function. This function is run across each
of those results. The processing output is then fed into the
finalize function, which can produce tables automatically
in latex, HTML, text, and wiki formats using the DataTable

module. All graphs and tables in Sections IV and V were
produced using the FTA toolbox.

C. Trace Data Sets

The FTA currently has nine formatted data sets, which
are listed in Table I, and seven others currently with
raw data only. We describe each formatted data set and
measurement method briefly. lanl05 is a data set of 22 HPC
systems at Los Alamos National Laboratory. It contains a
record for every failure that happened in these systems as
well as the root cause [21]. The g5k06 data set is a trace of
a computational grid platform in France (i.e., Grid’5000)
which consists of 9 sites, 15 clusters and more than 2,500
processors [12]. The data was collected by periodic in-
spection and logging of each node’s status through the grid
middleware called OAR. The microsoft99 data set contains
log files of 51,663 desktops PCs at Microsoft Corporation
where their reachability was determined with a ping every
hour [6]. The data set of websites02 was derived from
probe-based measurements where a single machine at
Carnegie Mellon sent a HTTP file request to web servers
periodically every 10 minutes [4]. pl05 consists of trace
data measured between all pairs of PlanetLab nodes using
pings every 15 minutes [23]. The ldns04 data set includes
the probe results of 62,201 local DNS servers where the
inter-arrival time of the probes followed an exponential
distribution with mean of one hour [19]. The overnet03
data set is a probe-based measurement conducted over the
Overnet peer-to-peer file-sharing system [5]. In this data
set, the availability of 3,000 hosts was checked every 20
minutes. The nd07cpu data set contains traces recorded
by Condor from the desktop systems at the University
of Notre Dame [20]. The data set is comprised of time-
stamped CPU load and idle times of each system, recorded
every 16 minutes. Finally, the skype06 data set is collected
by application-level pings of nodes in the Skype superpeer
network, every 30 minutes [11].

IV. Analysis of FTA Traces

In the following, we analyze data sets of FTA in
two steps. First, we inspect the basic statistics of the
traces. Second, we fit distributions for modeling failures
in terms of probability distributions of availability and
unavailability intervals.

A. Global Statistics

Statistics of availability and unavailability intervals for
all data sets are listed in Tables II and III respectively,
where the time unit is in hours. The statistics in the tables
are mean, trimmed mean, median, standard deviation (std),



System Type # of Nodes Target Component Period Year
lanl05 SMP, HPC Clusters 4,750 host 9 years 1996-2005
g5k06 Grid 1,288 host 1.5 years 2005-2006
microsoft99 Desktop 51,663 host 35 days 1999
websites02 Web servers 131 host 8 months 2001-2002
pl05 P2P 692 host 1.5 year 2004-2005
ldns04 DNS servers 62,201 host 2 weeks 2004
overnet03 P2P 3,000 host 2 weeks 2003
nd07cpu Desktop Grid 700 CPU, host 6 months 2007
skype06 P2P 2,081 host 1 month 2005

TABLE I. Summary of nine data sets in the Failure Trace Archive.

Trace Mean TrMean Median Std CV IQR Max Min Skewness Kurtosis No.
lanl05 1779.99 1208.09 280.28 3462.33 1.95 1593.37 34480.23 0.02 3.09 14.29 19874
g5k06 32.41 18.41 7.09 94.24 2.91 24.07 10157.73 0 15.06 695.83 294318
microsoft99 67.01 40.39 10 138.47 2.07 55 840 1.0 3.4 15.8 526078
websites02 11.85 5.17 0.83 40.10 3.38 5.17 1196.55 0 9.02 135.89 47843
pl05 159.48 71.42 1.71 475.61 2.98 35.60 6051.49 0 4.91 34.26 24928
ldns04 140.93 125.79 28.29 193.39 1.37 213.47 559.27 0 1.24 2.97 223596
overnet03 2.29 1.48 1.33 4.63 2.02 1.00 120.11 0 8.03 113.34 33443
nd07cpu 13.73 5.46 1.07 60.05 4.37 7.11 3783.57 0 25.49 1228.74 134176
skype06 16.27 10.12 5.11 34.57 2.12 11.87 465.95 0 4.81 34.38 29217

TABLE II. Statistics of availability intervals for different data sets. (Values given in hours.)

Trace Mean TrMean Median Std CV IQR Max Min Skewness Kurtosis No.
lanl05 5.88 1.67 0.97 78.39 13.32 1.98 5325.70 0 43.96 2289.91 23451
g5k06 7.41 0.94 0.05 60.24 8.13 0.19 6314.95 0 26.26 1237.26 294145
microsoft99 16.49 9.15 2 46.50 2.82 14 840 1.0 8.52 105.12 493687
websites02 1.18 0.49 0.17 22.92 19.46 0.34 3311.51 0 111.03 14311.32 47714
pl05 49.61 12.86 0.5 269.90 5.44 6.36 9329.47 0 15.10 340.33 24236
ldns04 8.61 5.47 2.28 20.68 2.40 7.82 533.22 0 8.62 123.06 161395
overnet03 11.98 4 0.33 36.82 3.07 1.67 167.83 0 3.66 15.11 35449
nd07cpu 4.25 0.47 0.27 62.83 14.77 0.36 3616.70 0.04 33.72 1307.29 134026
skype06 14.31 9.45 6.16 30.23 2.11 14.30 596.03 0.02 6.26 62.72 27136

TABLE III. Statistics of unavailability intervals for different data sets. (Values given in hours.)

coefficient of variance (CV), interquartile range (IQR),
maximum duration, minimum duration, skewness (the third
moment), kurtosis (the forth moment) and number of
intervals.

These tables have three types of descriptive statistics.
Statistics of the first type (mean, median, trimmed mean)
reflect the central tendency of the distributions. Statistics of
the second type (CV, IQR, minimum, maximum) measure
the spread of the distribution. Statistics of the third type
(kurtosis, skewness) reflect the shape of the distribution.

The results reveal that the ratios between the mean
and the median for availability and unavailability intervals
are quite different for each data set. This indicates that
single parameter distributions might not be a good option
for the failure model. This could be confirmed by the
skewness and kurtosis values that show the availability
distributions are right-skewed and long-tailed. Moreover,
the unavailability distributions are highly right-skewed and
longer tail than the availability distributions.

Additionally, the unavailability intervals have more

variability than availability intervals due to higher values
of coefficient of variance. Also, analysis of the trimmed
mean (the mean value after discarding 10% of extreme
values) confirmed that unavailability intervals have greater
variability. So, we may need distributions with higher
degrees of freedom, e.g., phase-type distributions, to model
the unavailability for these data sets.

B. Failure Models

We refer to the distribution of availability and unavail-
ability intervals as the failure model. The cumulative distri-
bution functions (CDFs) of availability and unavailability
intervals are plotted in Figure 3(a) and Figure 3(c), respec-
tively. The difference of data sets in terms of distribution
is shown in these figures.

We also conducted parameter fitting for various dis-
tributions, namely the Exponential, Weibull, Pareto, Log-
normal and Gamma distributions. The fitting was done
using maximum likelihood estimation (MLE). We adopted
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Fig. 3. CDFs of Availability and Unavailability Intervals.

Trace Exponential Weibull Pareto Log-Normal Gamma
lanl05 0.005 0.025 0.416 0.571 0.002 0.010 0.475 0.611 0.345 0.488
g5k06 0.012 0.038 0.472 0.597 0.003 0.018 0.394 0.564 0.409 0.507

microsoft99 0.005 0.084 0.294 0.546 0.000 0.049 0.371 0.611 0.198 0.418
websites02 0.000 0.006 0.079 0.354 0.000 0.027 0.188 0.401 0.055 0.182

pl05 0.000 0.000 0.080 0.245 0.002 0.016 0.168 0.321 0.043 0.131
ldns04 0.009 0.042 0.316 0.510 0.002 0.010 0.357 0.527 0.287 0.472

overnet03 0.045 0.460 0.068 0.532 0.000 0.013 0.160 0.660 0.052 0.481
nd07cpu 0.001 0.011 0.348 0.526 0.002 0.063 0.408 0.596 0.167 0.284
skype06 0.048 0.105 0.373 0.493 0.000 0.002 0.452 0.581 0.257 0.375

TABLE IV. P-values resulting from KS and AD tests for availability. A gray box denotes p-value above
significance level of 0.05.

Trace Exponential Weibull Pareto Log-Normal Gamma
lanl05 0.000 0.004 0.196 0.346 0.000 0.001 0.481 0.607 0.042 0.095
g5k06 0.000 0.000 0.008 0.073 0.000 0.000 0.037 0.144 0.003 0.022

microsoft99 0.004 0.180 0.048 0.529 0.000 0.376 0.076 0.611 0.052 0.368
websites02 0.000 0.023 0.001 0.150 0.000 0.002 0.005 0.209 0.003 0.090

pl05 0.000 0.000 0.035 0.178 0.000 0.004 0.081 0.274 0.019 0.079
ldns04 0.035 0.112 0.404 0.538 0.000 0.001 0.464 0.607 0.277 0.411

overnet03 0.000 0.040 0.003 0.305 0.000 0.204 0.011 0.389 0.005 0.118
nd07cpu 0.000 0.004 0.028 0.219 0.000 0.031 0.126 0.559 0.003 0.032
skype06 0.071 0.191 0.288 0.478 0.002 0.015 0.182 0.449 0.267 0.408

TABLE V. P-values resulting from KS and AD tests for unavailability. A gray box denotes p-value
above significance level of 0.05.

Trace Exp(µ) Wbl(k, λ) LogN(µ, σ) Gam(k, λ) Exp(µ) Wbl(k, λ) LogN(µ, σ) Gam(k, λ)
lanl05 1779.99 0.48 816.60 5.56 2.39 0.35 5102.71 5.92 0.58 2.18 0.05 1.42 0.38 15.44
g5k06 32.41 0.48 14.37 1.51 2.42 0.34 94.35 7.41 0.35 0.47 -2.00 2.20 0.19 39.92

microsoft99 67.01 0.55 35.30 2.62 1.84 0.41 162.19 16.49 0.60 9.34 1.42 1.54 0.46 35.52
websites02 11.85 0.46 3.68 0.23 2.02 0.31 38.67 1.18 0.65 0.61 -1.12 1.13 0.50 2.37

pl05 159.49 0.33 19.35 1.44 2.86 0.20 788.03 49.61 0.36 5.59 0.40 2.45 0.21 237.65
ldns04 141.06 0.51 79.30 3.25 2.33 0.39 362.43 8.61 0.63 5.62 0.91 1.64 0.51 16.87

overnet03 2.29 0.85 2.04 0.19 0.98 0.91 2.53 12.00 0.44 2.98 0.08 1.80 0.29 41.64
nd07cpu 13.73 0.45 4.16 0.30 2.20 0.30 46.16 4.25 0.51 0.74 -1.02 1.27 0.28 15.07
skype06 16.27 0.64 10.86 1.60 1.57 0.53 30.79 14.31 0.63 9.48 1.40 1.73 0.50 28.53

TABLE VI. Parameters of distributions for availability (left) an unavailability (right). mean: µ, std: σ,
shape: k, scale: λ.



two goodness of fit (GOF) tests, namely the Kolmogorov-
Smirnov (KS) and Anderson-Darling (AD) tests, to eval-
uate the fitted distributions. The results of both tests
are reported in terms of the p-values in Table IV and
Table V for availability and unavailability distributions,
respectively. The p-value shown is the average of 1000
p-values, each of which was computed by selecting 30
samples randomly from a data set. This is a standard
method for computing p-values as described in [18], [14]
when the number of samples is high.

These results reveal that for availability/unavailability
distribution we do not have a heavy-tail distribution as
the p-values for Pareto are very low. The only exceptions
are the distribution of unavailability of overnet03 and
microsoft99, which are close to being a heavy-tail
distribution. It is worth noting that the AD test is more
sensitive to the tail than the KS test. This explains the dif-
ference between p-values of the two GOF tests, especially
when we have a heavy-tailed data set.

The exponential function seems to be far from the
underlying distributions. However, it could be a good
fit for the availability distributions of microsoft99,
overnet03 and skype06 and the unavailability dis-
tributions of microsoft99, ldns04, and skype06
as well. So, the skype06 data set with the exponential
failure model is a good candidate to evaluate Markov
models for prediction of host availability/unavailability.

However, we observed that the resolution of the mea-
surement method could have caused the exponential dis-
tribution to be a good fit. For example, the overnet03,
skype06, and microsoft99 systems were measured
using probes with periods of 20 minutes, 30 minutes, and
1 hour, respectively. As such, there are no (un)availability
intervals less than this length, and in the CDF’s shown in
Figure 3, there are spikes at those period lengths.

Nevertheless, for all data sets, the Gamma distribution
is a good fit for the failure model as the p-values are rela-
tively high. This distribution is a very flexible distribution
function and can be adopted for analytical Markov model
as well [7].

Additionally, the results of the GOF tests show that the
best fit for all data sets are either the Weibull or Log-
Normal distributions. As expected from our statistical anal-
ysis, the failure model tends to be a long-tailed distribution.
However, a few data sets such as g5k06 and pl05 do not
have a perfect fit for the unavailability distribution.

One possible answer would be the relation of the model
with the system architecture. For instance, as the g5k06
platform has 15 clusters in 9 geographically distributed
sites, each cluster could have its own separate model as
proposed in [12]. Moreover, as mentioned before, we need
distributions with more degrees of freedom such as the
hyper-exponential to model the unavailability distributions.

Levels
Parameter Low High Unit
V : Volatility V < 50 V > 100 hour

A: Availability A < 60 A > 90 %
M : Measurement M < 6 M > 12 month

S: Scale S < 1 S > 2 103 nodes

TABLE VII. Parameters in the qualitative com-
parisons. The Medium level is between Low
and High levels.

Trace V A M S Failure model
lanl05 L H H H Long-tailed/Long-tailed
g5k06 M M H M Long-tailed/Long-tailed
microsoft99 M M L H Short-tailed/Heavy-tailed
websites02 H H M L Long-tailed/Long-tailed
pl05 L M H L Long-tailed/Long-tailed
ldns04 L H L H Long-tailed/Short-tailed
overnet03 H L L H Short-tailed/Heavy-tailed
nd07cpu H M M L Heavy-tailed/Long-tailed
skype06 H L L H Short-tailed/Short-tailed

TABLE VIII. Qualitative comparison of nine
data sets in the FTA. H:High, M:Medium,
L:Low. For V, A, M, and S, see Table VII.

Table VI reports the parameter values of different dis-
tributions for the availability and unavailability intervals of
all data sets under study. For the availability distributions,
we analyze the hazard rate, i.e., the probability of the
next failure with respect to time from the last failure.
For the data sets that Weibull or Gamma distributions
are good fit, the hazard rate is decreasing. Recall that
for such distributions if the shape parameter is less than
one, i.e., k < 1, then we have a decreasing hazard rate.
That means if the systems do not have any failure for
long time (longer availability duration) the probability of
a failure occurring in the near future decreases. In other
words, a decreasing hazard rate could be interpreted as
more stability of resources over time [17]. The only hazard
rate that is alarming is with overnet03 where the shape
parameter is close to one.

Finally, to have an overall view of the data set charac-
teristics, we present a qualitative comparison of them in
Table VIII. The first two parameters are at the node-level,
and the other two parameters are at the system-level. The
volatility (V ) is dependent on the failure rate of each node
in the system. The availability (A) is the percentage of
time that a node is working properly. The measurement
(M ) and the scale (S) is the duration of measurement and
scale of the system, respectively. The failure model is the
tail behavior of availability and unavailability distributions.
For each item we assign three different levels as described
in Table VII.

For the failure model, we observed that all best fits
are long-tailed distributions. However, for the qualitative



table, we applied another classification based on the p-
values of the KS and AD tests with a significance level
of 0.05. If a data set has acceptable p-values for Pareto
or Exponential distribution, the failure model would be
heavy-tailed or short-tailed, respectively. Otherwise, the
failure model could be classified as long-tailed (for more
details about tail behavior, see [7]). Table VIII could
provide a good overview of the data sets’ characteristics for
researchers that want to use real traces for their research.

V. Differences of Interpretation

To emphasize the critical need for public data and
analysis methods, we give three examples of where dif-
ferences of trace interpretation result in differences of the
derived models. In particular, we show that differences of
interpretation can change dramatically the distribution of
failures in terms of passing statistical goodness-of-fit tests
and the fitted distributions.

We choose three systems, namely lanl05, g5k06 and
nd07cpu, where the time of failures can be interpreted
differently. On close examination of the lanl05 trace, we
found that there are overlapping unavailability intervals.
This overlapping of intervals was especially evident in
System 16. This system is a cluster of 16 NUMA-based
nodes, each of which has 128 processors and 4 NICs.

In some cases, one failure interval completely subsumed
another. In other cases, the start time of a failure interval
A was greater than the start time of another interval B but
less than the stop time of interval B. Moreover, the stop
time of A was greater than the stop time B. We believe
these intervals might be the result of human error, as the
data was manually recorded.

The authors that first described this data set in [21] did
not detail the cause of these intervals nor how or why these
intervals were interpreted in a certain way. Comparing our
statistics of the failures with those in [21], we “reversed
engineered” the interpretation, and found that the authors
used the union of failures intervals having ambiguity. For
comparison, we interpret the failure intervals in System
16 differently and optimistically using their intersection,
calling the resulting post-processed data set lanl0516B.

We also found different possible interpretations of the
g5k06 trace. In the raw trace, the states of nodes are
given as available, unavailable, suspected, or
dead. Suspected is a state (given mostly automatically)
when a node does not behave well according to OAR, the
Grid’5000 node manager. The "bad" behavior is detected
through many tools, such as the node monitor finaud, the
jobs monitor sarko, and the internal OAR state manager
NodeChangeState. Pessimistic trace processing would in-
terpret the suspected state as a failure, and assume un-
availability. An optimistic trace processing would interpret

the suspected state as a fault but not a failure, and
assume availability. The former interpretation is used in the
g5k06 trace described in previous sections and in [12].
We denote the latter interpretation as g5k06B.

The nd07cpu trace is the third data set for which there
is room for interpretation. The trace is comprised of host
idle times and CPU loads as well. Defined in [20], the
original definition of CPU availability is when the host
is idle without any user for more than 15 minutes, and
CPU load (which could be independent of the user) is
less than 50%. We relaxed this condition to lengthen the
CPU availability time by including the time when a user
is present (which in turns would cause zero idle time) and
CPU load is less than 10%. That is a reasonable definition
of CPU availability as the guest job could still be run on
the host without interfering significantly with local jobs.
The data set with this latter interpretation is referred to as
nd07cpuB.

In the following, we present the analysis of different
failure interpretations for the aforementioned data sets.
First, we compare the empirical distributions graphically.
Second, we fit several distributions to each of the data sets,
and compare the fitted distributions for each pair of data
sets. We compare the fitted distributions statistically with
p-values, and then graphically with qq-plots.

A. Differences of Empirical Distributions

Figure 4 shows the quantiles of the empirical distribu-
tions for each pair of data sets. (We only show qq-plots
for g5k06’s availability, lanl0516’s unavailability, and
nd07cpu’s availability to save space.) If the two data sets
have the same distribution, their qq-plot will match the line
y = x, which is plotted in solid red as a reference.

For g5k06, in Figure 4(a), we see that g5k06B has
longer availability intervals (and also shorter unavailability
intervals). This is clearly due to the optimistic interpreta-
tion of the suspected state. The deviation is greatest at
the quantile at 1000 hours of g5k06B, which corresponds
to the the quantile of 600 hours of g5k06. Also, the
mean availability in g5k06B was increased by a factor
of 1.50 because the difference of interpretation. The mean
unavailability in g5k06B was decreased by a factor of
1.13 due to the decrease in the number of failures.

For lanl0516, we see little differences of interpre-
tation for availability. This is due to the fact that System
16 is highly available over a long time frame. So changes
in unavailability periods do not affect availability periods
visibly. However, there are clear differences in the dis-
tribution of unavailability as shown in Figure 4(b). The
unavailability in lanl0516B is much shorter than that in
lanl0516.

For nd07cpu, we find that nd07cpuB has longer



(a) g5k06, availability (b) lanl0516, unavailability (c) nd07cpu, availability

Fig. 4. Quantile-Quantile plots of empirical data for ambiguous data sets.

availability and unavailability intervals than nd07cpu. In
particular, the mean length of availability and unavail-
ability increased by a factor of 1.47 and 1.35 respec-
tively. While the total amount of unavailability decreased
in nd07cpuB, the small unavailability intervals became
availability intervals, after the optimistic processing of
the traces. So both the mean lengths of availability and
unavailability were increased.

B. Differences of Fitted Distributions

Here we show how the differences of interpretation af-
fect the statistical goodness-of-fit tests of fitted distribution,
and their fitted parameters.

Typically, a significance value of 0.05 or 0.10 is used
as a threshold for p-values to determine whether to reject
the NULL hypothesis that the fitted distribution represents
the empirical. We found several cases where the p-values
result in conflicting conclusions, i.e., p-values that indicate
both rejection and failure of rejection.

For instance, the AD-test for the Weibull distribution
fitted to g5k06’s unavailability intervals resulted in a
p-value of 0.07, whereas the p-value corresponding to
g5k06B was 0.035. Similarly, for the AD test for the Log-
Normal distribution, the p-value is 0.148 for g5k06 versus
0.057 for g5k06B.

Thus, if a threshold of 0.05 is used, we find that the
Weibull distribution would not be rejected for g5k06’s un-
availability distribution, but would be rejected g5k06B’s
unavailability distribution. Similarly, if a threshold of 0.10
is used, the Log-Normal distribution would not be rejected
for g5k06, but would be rejected for g6k06B’s unavail-
ability distribution.

We find similar cases for lanl0516 and lanl0516B,
and nd07cpu and nd07cpuB. For lanl0516, the
Gamma distribution is rejected for lanl0516’s unavail-
ability intervals but not rejected for lanl0516B accord-
ing to the p-values resulting from the KS test (0.046
versus 0.056). For nd07cpu, the Log-Normal distribution
is rejected for nd07cpuB’s unavailability intervals, but

not rejected for nd07cpu according to the p-value for
the KS test (0.14 versus 0.01).

In addition to quantitative contradictions, we show con-
tradictions graphically as well in Figure 5. There, we plot
the quantiles for the fitted Gamma distributions of each
pair of data sets. We choose the Gamma distribution as it is
analytically easy to use and has a relatively high p-value. In
particular, we do so for g5k06’s availability distributions,
lanl0516’s unavailability distributions, and nd07cpu
availability distributions.

We observe from the qq-plots that the distributions
fitted to different interpretations of the same data set
are dramatically different. For example, for lanl0516,
we see that the quantile of 40 hours for lanl0516B
corresponds to the quantile of 180 hours for lanl516.

Furthermore, the impact on the distribution parameters
is significant and shown Table IX. Significant differences
in parameters are highlighted in grey. For instance, the
mean of the exponential distribution for g5k06B’s avail-
ability is a factor of 1.50 times greater than g5k06. Also,
different interpretations affect greatly the scale parameter
of the Gamma. For instance, the scale parameter of the
gamma distribution for g5k06B’s availability is factor of
1.39 times greater than g5k06.

The fact that both the empirical distributions and fitted
distribution mismatch emphasizes the need for public data
sets and methods. Otherwise, one cannot determine how
the data was exactly interpreted much less why.

VI. Related work

Here we compare our archive with other projects, and
also previous works on statistical modeling. While several
archives exist, the FTA differs in several respects. First,
it defines a standard format that facilitates use and com-
parison of the traces. Second, the archive contains over 9
data sets provided in this format, and raw traces for over
16 systems. Raw data and the scripts to parse and analyze
them are publicly available. The data sets are derived from
diverse distributed systems over a long time-frame of over
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Fig. 5. Quantile-Quantile plots of fitted distributions for ambiguous data sets.

System Exp(µ) Wbl(k, λ) LogN(µ, σ) Gam(k, λ) Exp(µ) Wbl(k, λ) LogN(µ, σ) Gam(k, λ)
g5k06 32.41 0.48 14.37 1.51 2.42 0.34 94.35 7.41 0.35 0.47 -2.00 2.20 0.19 39.92

g5k06B 48.61 0.52 22.66 2.08 2.21 0.37 131.78 6.54 0.35 0.31 -2.36 2.07 0.18 37.00
lanl05 1779.99 0.48 816.60 5.56 2.39 0.35 5102.71 5.92 0.58 2.18 0.05 1.42 0.38 15.44

lanl05B 1774.21 0.48 812.98 5.55 2.39 0.35 5087.60 5.06 0.59 2.12 0.03 1.40 0.41 12.28
nd07cpu 13.73 0.45 4.16 0.30 2.20 0.30 46.16 4.25 0.51 0.74 -1.02 1.27 0.28 15.07

nd07cpuB 20.12 0.48 7.21 0.91 2.07 0.33 61.74 5.75 0.49 0.83 -0.91 1.21 0.26 21.72

TABLE IX. Parameters of distributions for availability (left) and unavailability (right) for ambiguous
data sets. mean: µ, std: σ, shape: k, scale: λ. A grey box indicates significant a difference of
parameters between data sets.

10 years. Third, it provides a public toolbox for failure
trace analysis.

The Grid Observatory [16] provides numerous data
sets. However, the repository is currently limited to EGEE
resources, and only raw data is provided without a common
format nor scripts for parsing or analysis. The Computer
Failure Data Repository [22] provides traces to several
supercomputers and clusters. However, no standard format
is defined, and the trace data is in raw format only. The
Repository of Availability Traces [9] contains traces for 5
distributed systems in a common format, and scripts used
for parsing the raw data. While a standard format is de-
fined, we believe this format excludes critical information
for capturing a range of failure types and systems. For
example, the format does not contain causes of failures, the
creator, or the component type. The Desktop Grid Trace
Archive [15] is focused specifically on desktop grids. A
generic failure format was not provided, nor were traces
of other types of distributed systems.

The Parallel Workloads Archive [8] and Grid Workloads
Archive [13] provide traces of jobs submitted to clusters or
Grids. However, this application-level information does not
contain information about job, service, or resource failures.

In terms of statistical modeling, our work presents the
first uniform statistical analysis and comparison of the nine
distributed systems. Most studies, in particular [5], [6],
[11], [19], [23], do not focus on modelling issues. A few
other studies have also conducted modelling of the distri-
bution of failures. However, the modelling work usually

focuses on a particular data set and so the generality of
the model was not confirmed. Moreover, the process of
failures modeled was significantly different.

For instance, in [21], the authors model the time be-
tween failures, and the repair time. They do not model
availability interval lengths directly. Yet we believe this is
essential for stochastic scheduling algorithms that conduct
task assignment based on the probability of task comple-
tion.

Also, in [12], the authors model the inter-arrival time
between failures. Again, the temporal structure of avail-
ability intervals and unavailability intervals is not captured
in this model but is needed for stochastic scheduling.
Clearly, an inter-arrival time does specify the availability
or unavailability length during that time frame.

Similarly, in [4] the entity being modeled is different.
In that study, the authors model the number of machines
available at some time point, considering correlated fail-
ures, in the context of a distributed storage system. By
contrast, our study focuses on the the continuous durations
of availability and failures.

VII. Conclusion

Despite the importance of failures in (large-scale) dis-
tributed computing environments, few traces collected
from real environments are publicly available. To address
this situation, which restricts the applicability of failure



models and the development of failure-aware systems, our
contribution in this work is threefold:

• We have created the Failure Trace Archive for fa-
cilitating the comparative analysis of failures in dis-
tributed and parallel systems. We defined a standard
trace format, and showed its suitability by converting
nine diverse distributed systems to this format. Given
traces of this format, we implemented a toolbox that
facilitates the comparison of failure statistics, models,
and algorithms. Ultimately, we envision that scientists
would use the toolbox as a repository of modeling and
predictive methods.

• Using the toolbox, we gave a uniform and global
statistical analysis of failure in 9 distributed systems.
One key finding was that the Weibull and Gamma
are the often the best candidates for availability and
unavailability distributions. Moreover, the hazard rate
wrt to the Weibull was decreasing in all systems. In
some cases, the measurement method (in particular
the resolution of probing) seemed to cause bias in
the distribution of availability, and we identified these
data sets with potential bias.

• Finally, we showed how differences of interpretation
of trace data sets can result in dramatically different
failure models and statistics. This showed that it is
critical to make both trace data and analytical methods
publicly available.

VIII. Availability of FTA Data and Scripts

The Failure Trace Archive, including technical docu-
mentation on the data format, the toolbox. and the trace
data sets are available online at: http://fta.inria.fr.
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