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Abstract—The increasing adoption of Internet of Thing (IoT)
technology in many application domains generates a new need for
rationalized utilization of computing resources supporting such
computations. IoT applications can be represented as workflows
in which stream and batch applications are integrated to accom-
plish data analytics objectives in many application domains such
as smart home, health care, bioinformatics, astronomy, education,
etc . The main challenge of this combination is the differentiation
of service quality constraints between the two computation
paradigms. Stream processing is highly sensitive to real-time
constraint while batch processes are usually resource-intensive.
In this work we propose a resource provisioning framework for
combined workflows which aims to find an optimal workflow
configuration plan to minimize execution time and monetary
cost. The framework has functions of execution plan generation,
task clustering, and resource provisioning. Results show that
framework is capable to control the execution of combined-
workflows by efficient tunning several parameters including
stream arrival rate and processing throughput.

I. INTRODUCTION

The increasing adoption of Internet of Thing (IoT) tech-
nology in many application domains generates a new need
for rationalized utilization of computing resources to support
such computations. The technology has been involved in
many application domains such as smart home, health care,
bioinformatics, astronomy, education, etc. By the year 2020,
around 50 to 100 billion IoT-enabled devices will be connected
to the Internet [1]. The upcoming popularity of IoT usage
motivates researchers to introduce reliable and convenient
application models to overcome the challenges of processing
real-time data generated from IoT devices. These challenges
are aligned with three main directions: integration and com-
patibility, security, and service quality. The majority of IoT-
based applications are comprised of a large-scale and complex
structure of interrelated tasks which are mostly high-resource
demanding for computation, storage and bandwidth [2]. A
common and efficient representation of such applications is
Direct Acyclic Graph (DAG) structured workflow model. DAG
representation that is widely accepted in many data analytics
domains such as bioinformatics, high-energy physics, and
astronomy.

Data analytics workflows have prominent features over tra-
ditional workflows that inspire researchers in proposing well-
formed techniques and algorithms to optimize the increasingly
cost of running large-scale versions of these workflows on

commodity resources, such as public clouds in a stable and
seamless manner. The structure of data analytics workflows
embraces the integration of both stream and batch data pro-
cessing pipelines. Stream and batch processing have different
fundamental processing quality of service (QoS) requirements.
IoT applications involve accepting high data stream rate from
data channels and pipelines initiated from sources such as IoT
devices and sensors.

As a first stage of data analytics workflow processing, data
streams may need a real-time or near real-time preprocess-
ing which may involve huge consumption of computation
resources liable to stream format, processing time sensitivity,
and nature of applied processing functions. On the other hand,
batch processing which is more associated to functions of
decision making and data aggregation over high data volume.
Basically, batch processing is not a time-sensitive process,
instead, it is more cost-effective due to the amount of resources
required to handle large chunks of data. Moreover, both
processing models are considerable for processing quality or
throughput which determines the efficiency of processing com-
putation under certain user and application QoS requirements.

To summarize, there are three main challenges associ-
ated with combined data analytics, namely, processing time
sensitivity for stream data, monetary cost of resources, and
throughput. So far and To best of our knowledge, none of
the workflow resource estimation and scheduling techniques
have advanced a detailed proposition of how to incorporate
the structure of combined workflows (as a integration of
stream and batch applications) and the above mentioned QoS
processing challenges. This work aims to provide an adaptive
resource estimation and provisioning framework for combined
workflows. This paper has the following contributions:
• A resource provisioning algorithm for optimizing mon-

etary cost and execution time for combined workflows
considering the characteristics of stream and batch appli-
cations, and the dependencies between tasks.

• An adjustment-based resource estimation algorithm for
stream applications using an evolutionary technique. The
algorithm adjusts the stream arrival rate and aggregation
windows size to optimize the cost of resources while
satisfying the task execution throughput.

• A cluster-based resource provisioning strategy. The strat-
egy implies grouping non-dependent tasks and perform a



cumulative resource provisioning in a periodic manner
which can minimize the monetary cost for long-term
workflow executions.

The rest of paper is structured as follows. In Section II,
we discuss related work on workflow resource provisioning.
Detailed description of application modeling, problem formu-
lation, and the resource provisioning framework is provided
in Section III and IV, respectively. Section V shows the
experimental findings and provides insights on main results.
Finally, the conclusion and future works are provided in
Section VI.

II. RELATED WORK

Cloud resource provisioning has received high attention in
recent years. Many models have been proposed to overcome
the challenge of reducing resource usage cost while balancing
other quality measurements [7], [14], [15], such as response
time [3], scalability [4], energy [5], resource failure [6] and
throughput. Basically, resource provisioning relies on two
main criteria: application workload and complexity [7], and
provisioning time sensitivity. Most of resource provisioning
models assume deterministic workload models, which are
high predictable, and mostly focus on generating resource
allocation plans to reduce resource allocation cost. Iqbal et
al. [8] observed that even adaptive resource provisioning do
not scale workload automatically, but may do it per user signal.
Kapitanova et al. [9] employed stream application execution
time in predicting data workload in a fixed data size mode, and
Zhang et al. [10] proposed an energy-aware dynamic resource
provisioning model using a queuing system model. Their work
does not consider the workload characteristics. Vecchiola et al.
[3] presented a multi-cloud resource provisioning model to en-
hance scientific workflows QoS constraints while meeting exe-
cution deadline. Shao et la. [11] provided a provisioning model
for big data applications, their workload model emphases
only the number of jobs. Warneke and Kao [12] proposed
Nephele, a cloud-based parallel processing framework, and
characterized three features of sufficient resource provisioning
model: understand the dependences between application tasks,
analyze the specifications of available resources, and provide
efficient resource allocation and deallocation model. Li et
al. [13] concluded that it is not trivial to determine the
characteristics of data stream application for the purpose of
resource provisioning and allocation.

We can conclude from related work discussion the empha-
size on quantitative analysis for incoming application work-
loads while provide provisioning techniques. Moreover, non
of these models have stressed the fabric representations of
these applications as many scientific and business domains
are moving toward combined dataflows of stream and batch
applications.

This work provides a resource provisioning framework
for combined workflow applications to meet the mentioned
research limitations as we will consider the dependencies
between steam and batch applications, The framework will

provide an optimized resource previsioning plan based on
mentioned considerations.

III. APPLICATION MODEL

The work is proposed to estimate and provision cloud
resources for combined workflows which have the integration
of stream and batch tasks (applications). A workflow w is
modeled as a Direct Acyclic Graph (DAG) of tasks T with
direct edges E and no cycles or conditional dependencies, w
= G(T,E), where T is a set of tasks T = {t1, t2, . . . , tn}
and E is a set of edges in which an edge eij is exist if
there is a data dependency between tasks ti and tj . A task
ti represents the execution of either a streaming (tiS) or
batch (tiB) application. The two type of applications have
different characteristics which formed the modeling process,
specifically, a streaming task is modeled as a M/G/c multi-
server queuing system [16], where a batch task is modeled
as a simple deterministic mathematical model. We used the
term task and application interchangeably in this work, and
we assume that a task itself is a composition of interrelated
sub-tasks. The work does not handle the inner-representation
of tasks and keeps the abstraction at application-level only.

A. Stream Application Model

We assumes that each stream task ti
S represents the

execution of an end-to-end stream application. For the
purpose of resource estimation, we modeled stream task
execution ti

S as an M/G/c queuing system [16], by which
the number of servers is calculated. A stream task ti

S is
modeled as:

ti
S = {λi, µi, ωi, τi, αi} (1)

where λi is the application stream arrival rate (msg/s), µi is
the server service rate (msg/s), ωi is the stream processing
aggregation window size (s), τi is the application minimum
throughput, we defined the throughput as the percentage of
processed stream messages in a given aggregation window,
and αi is application data production factor which determines
the amount of data to be passed to the next batch task(s).

B. Queuing system model for stream applications

The main objective of the adopted queuing modeling is
to estimate the number of servers needed to run the appli-
cation under constraints of system utilization , waiting time,
and system throughput. Number of servers is related to the
parallelization level of a stream application, which is an
effective technique for seamless and transparent application
auto-scaling [19].

The adopted queuing system has the following aspects:
a data stream arrives to an infinite waiting queue that is
served by c identical servers, the server service time is a
random variable with general distribution and mean 1/µ, the
interarrival times between element arrivals to the queue is ran-
dom variable with mean 1/λ, and all service and interarrival
times are assumed independent. Arriving stream elements are
served in First-come First-served manner (FCFS) and only one



stream element may receive a service from a server at a given
time. Such system is often referred to as M/G/c, following
Kendalls notation [17] (M indicates Poisson distribution for
interarrival rate and G indicate general distribution for service
times, and c is the number of servers).

Modeling a stream application as a M/G/c-queue helps in
predicting the performance measurements of an application,
such as resource utilization and data throughput. Dor et al. [18]
investigated the correspondence between a relatively simple
queuing model of an FPGA-accelerated BLAST implemen-
tation and empirical measurements taken from executions of
the actual application. The study shows that simple queuing
networks can accurately model the performance of a heteroge-
neous streaming application. Li et al. [13] argue that queuing
system has a better performance under certain assumptions of
a data stream application.

We assume that at a given moment of time, all servers c
will be busy. Based on that, Hokstad [20] proved that we can
treat M/G/c with service time (S = 1/µ) as a M/G/1 with
service time (S = 1/µc). We will use the approximation by
Kleinrock [16] as:

ρ =
λ

µc
(2)

Wq =
ρ(1 + S2)

2(1− ρ)µ
(3)

ES2 = σ2
sµ

2 (4)

where:
ρ System utilization, assume to be < 1
Wq Waiting time in queue
σ2
s The variance of service time
S2 The coefficient square of the service time variance

C. Batch Application Model

Similar to stream task, we assumes that each batch task tiB

represents the execution of an end-to-end batch application. In
order to estimate the number of servers, we modeled tiB as a
simple deterministic mathematical model:

ti
B = {ϑi, τi, αi, βi} (5)

where ϑi is the application deadline (s) , τi is the application
minimum throughput , αi is the application data production
factor, and βi is the application aggregation factor which
denotes to the number of messages required for producing
a single application output.

IV. RESOURCE ESTIMATION AND PROVISIONING
FRAMEWORK

This section discusses the proposed resource estimation and
provisioning framework for combined workflows. Fig 1 shows
the main framework components and dependencies between
these components, which are explained in the following:

1) Queueing System Builder: The first step after receiving
user workflow is constructing and validating queueing systems
for stream tasks. This step validates workflow liability as a
framework input.

2) Workflow Configuration Plan Generator: This is the key
component of the framework in which workflow configuration
plans are generated under constraints of queueing system
utilization, waiting time and workflow execution throughput.
A configuration plan is a set of values for stream applications
refer to properties of window size and arrival rate. Based on
the dependencies between workflow tasks, these values have
direct influence on measuring execution time and monetary
cost of resources for both stream and batch applications. For
the purpose of generating configuration plans, we adopted
Particle Swarm Optimization (PSO) technique [21].

PSO is a stochastic global optimization method introduced
by Eberhart and Kennedy [21] which based on simulation of
social behavior. As in Genetic Algorithm (GA) and Evaluation
Strategies (ES), PSP exploits a population of potential solu-
tions to prop the search space. PSO relies on exchange infor-
mation between individuals, called particles, of the population,
called swarm. Each particle adjusts its trajectory towards its
own previous best position (local best), and towards the best
previous position attained by the entire population (global
best). This behavior improves the converge time to get a global
minima with a reasonable good solution. A particle movement
(new position) is co-ordinated by the velocity which has both
magnitude and direction. The particle velocity is influenced
by the particle best position and the global best position, and
also controlled by parameters including inertia weight and
acceleration coefficients.

The objective of adopting PSO is to generate adjusted work-
flow configuration plans by randomizing data stream arrival
rate λ and aggregation window size ω in order to minimize
the optimization objective function and meeting the constraints
of throughput τ and deadline ϑ for each streaming and batch
application, respectively. This kind of PSO modeling is called
constrained-PSO optimization [22]. Fitting constrained-PSO
method to the proposed optimization problem will identify
both the fitness function and the particle structure. The fitness

Fig. 1. Resource estimation and provisioning framework



Algorithm 1 Finding an optimal workflow configuration plan
Load PSO Configuration
Initialize Particles P
P.pos← NULL . Best Position
P.gbest← inf . Best Cost
for i← 1, n do . n: Number of particles

Randomize Pi.pos
Pi.velcity ← 0
Pi.cost← callculteCost(Pi.pos) . Algorithm. 5
Pi.lbest← Pi.cost

end for
for j ← 1,m do . m: Number of iterations

for i← 1, n do
Update Pi.velcity
Pi.pos← Pi.pos+ Pi.velcity . move particle
Pi.cost← callculteCost(Pi.pos)
if Pi.cost ≤ Pi.lcost then

Pi.lbest← Pi.cost . update local best
if Pi.lbest ≤ P.gbest then

P.gbest← Pi.lbest . update global best
P.pos← Pi.pos

end if
end if

end for
end for
if P.gbest == inf then

return NULL . No solution
else

return P.pos
end if

function, which also called the objective function, measures
the performance of a particle for comparison purpose with
local and global optimum. The optimization function expresses
the fitness function. To serve the objective PSO engine for
adjusting the values of arrival rate λ and window size ω, a
particle is structured to hold required values for all stream
tasks, and the particle dimension equals the number of stream
tasks. Thus, the particle structure is a workflow-dependent
where it’s complexity derived from the number of stream tasks
as well as the workflow structure complexity. For example,
Table I shows how a 5-dimensional particle which is structured
for a workflow with 5-stream applications. Columns of Arrival
rate λ and Window size ω values express the particle position
in a random iteration. Moreover, a particle position is the
representation of a workflow configuration plan which will
feed the cost computation process to generate values which
will be applied for the objective function.

Algorithm 1 provides the steps to find the optimal configura-
tion plan for a given combined workflow. The PSO-based tech-
nique has two main steps: generates solutions (configuration
plans), and evaluates the performance of these solutions. The
first step is handled by providing randomizations for particles
and moving particles toward calculated velocity. Algorithm 2
shows the computation procedure to calculate the optimization

Algorithm 2 Tasks Clustering (Periods) and Critical Path
procedure FINDWORFLOWCP(T )

Find Workflow Critical Path CP
ETP← {} . Workflow Execution Periods
for i← 1, n do . n: Number of tasks

if Ti ∈ CP then
Add Ti to ETP

else
Try to allocate Ti in ETP

end if
Add Ti.S to ETP.S

. Update period number of servers
end for
if All Tasks allocated then

return CP , ETP
else

return NULL
end if

end procedure

value of a configuration plan, which is represented as a PSO
particle position. To evaluate the performance for a given
solution, we need to calculate end-to-end workflow execution
time and total resource provisioning monetary cost. .

3) Execution Time Estimator: The workflow execution time
is estimated using task clustering approach. Task clustering
is the process of grouping independent tasks in time periods.
Each period of time has the length of leading task in workflow
execution critical path (CP). CP represents the longest-time to
process the workflow, and critical tasks the most significant
contribution on workflow execution time. We consider that
each critical task as a separate period of execution time,
and then try to converge all remaining tasks to appropriate
periods. Algorithm 2 provides a simple conceptualization of
task clustering. However, this concept allows simplification
of resource provisioning as it eliminates the complexity of
allocating resources for interrelated tasks which will be in
different periods of time. Finally, period-based resource provi-
sioning. additional dimension of cost reduction is selecting a
cost-effective resource allocation plan in respect to the variety
of cloud computation units (virtual machine). On the top of
that,

4) Monetary Cost Estimator: We assumed resource provi-
sioning at group-basis, it means allocating resources for all
tasks included in a period of time as Bag of Task (BoT)

TABLE I
AN EXAMPLE OF PARTICLE POSITION (A CONFIGURATION PLAN)

Task Index i Arrival Rate (λ′) (msg/s) Window Size (ω′) (s)
2 4792 275
3 4250 344
7 3989 250
8 3685 1100
12 3700 1250



Algorithm 3 Periodic Resource provisioning
1: procedure PROVIOSINPERIODRESOURCES(ETPi)
2: load VM . Get cloud resource configuration
3: C˙min← inf . Minimum ETP Cost
4: for i← 1, v do
5: . v: Number of cloud VM configurations
6: CVMi ← provisionETP (ETP.S, V M i)
7: if CVMi ≤ Cmin then
8: Cmin ← CVMi

9: end if
10: end for
11: return Cmin

12: end procedure

resource provisioning problem. Rodriguez and Buyya [23]
demonstrated that fine-grained resource provisioning for BoT
applications can reduce the execution time while achieving
budget constraint. Periodic provisioning technique is adopted,
which has two steps: finding number of servers, and finding
the optimized resource provisioning plan. For a stream task,
the process is straightforward, values are constructed from
the proposed queuing system. Furthermore, number of servers
cs represents the level of parallelism. We assume that each
level of parallelism equivalent to a single-core machine. from
Equation 2, we can derived number of servers cs as :

cs =
λ′

µρ
(6)

For a batch task, Algorithm 4 shows execution time and cost
calculations upon incoming computation load. After finding
the total number of servers (equivalent to number machine
cores) for a period of time, a deterministic model is used to
find optimized (less cost) provisioning plan on the available
computation machines (VMs). Algorithm 5 discuses the logic
of finding the resource provisioning plan. Periodic provision-
ing technique is described in Algorithm 3.

5) Combined-Workflow Resource Provisioning Optimizer
(CWRPO): The optimizer aims to control the execution of
combined workflows in order to minimize monetary cost and
execution time. In other words, reducing provisioned resources
cost C while minimizing the end-to-end execution time E for
each batch application tiB . A configuration plan is evaluated
based on the following optimization function:

min(C ∗ E) (7)

Subject to:

Eti < ϑtiB , ∀tiB ∈ T
τtiS > τtD , ∀tiS ∈ T

Where:
Eti Batch Task execution time
ϑti Task deadline
τti Stream Task throughput
τtD Application-defined throughput

Algorithm 4 Process batch task Ti to find number of servers
and execution time

procedure PROCESSBATCHTASK(Ti)
S ← 0 . Number of servers
ET ← 0 . Execution Time
Compute total predecessor stream tasks load

totalSLoad
Compute total predecessor batch tasks load

totalBLoad
totalLoad← totalSLoad+ totalBLoad
Compute total load time totalBT ime
while totalBT ime ≥ ϑ do . Check deadline

S ← S + 1
updateET

end while
return S,ET

end procedure

Algorithm 5 Calculating the optimization value of a configu-
ration plan

1: procedure CALLCULTECOST(Pos , T )
2: Parameters: Position Pos , Workflow Tasks T
3: C ← 0 . Monetary Cost
4: ET ← 0 . Execution Time
5: for i← 1, n do . n: Number of tasks
6: if Ti.type == STREAM then
7: Ti.S ← findStreamS(Pi.λ) . Eq. 6
8: Ti.ET ← Pi.ω . ET is the window size
9: else

10: Ti.S, Ti.ET ← ProcessBatchTask(Ti)
11: . Algorithm. 4
12: end if
13: end for
14: ET,ETP ← findWorflowCP (T ) . Algorithm. 2
15: if ET 6= NULL then
16: for j ← 1, p do . p: Number of execution periods
17: C ← C + proviosinPeriodResources(ETPj)
18: . Algorithm. 3
19: end for
20: return C ∗ ET
21: else
22: return inf
23: end if
24: end procedure

V. PERFORMANCE EVALUATION

In this section, we present the experiment setup and results
of the proposed framework.

A. Experimental setup

Shukla et al. [24] provide valuable benchmarking results
for standard IoT application dataflows for both stream and
batch applications. In addition, they discussed the standard
structure of these application by identifying the dependencies



Fig. 2. High level stream and batch applications dependencies for data
analytics workflows [24]

between stream and batch tasks. Fig 2 shows four IoT-
based dataflow application tasks. Extract data from steams
and perform predictions are stream tasks, whereas training
machine learning models and showing statistical results are
more related to batch processing. Shukla et al. [24] evaluated
each application type based the micro-benchmarking for sub-
tasks, and by running each sub-task in a single-core machine.
We used the benchmarking results in defining initial models
parameters as well as building workflows for experiments.
Three workflows were constructed: small, medium horizontal-
scale, and large vertical-scale. Workflow scalability has a
high correlation with optimization parameters. Based on our
framework, workflow execution time should be more sensitive
to vertical scalability which horizontal scalability has more
contribution in the total monetary cost. Table II presents the
main characteristics of these workflows.

We extended CloudSim [25] to support the execution of
workflows. We modeled a single data center and three VM
types to simulate a cloud resource provider. The VM types
have the same configurations of Amazon EC2 VMs. Table III
shows the details about VM configurations.

We compare the performance of the proposed CWRPO
with two other techniques, namely, full mode and random
selection. Full mode technique implies running the workflow
with semi-optimization process at queuing system utilization
level. Random selection technique is a provisioning technique
without optimization efforts at any framework execution level,
either on queuing system utilization or task clustering.

TABLE II
WORKFLOWS CHARACTERISTICS

Workflow #Stream Tasks #Batch Tasks Scale Mode
Small 3 5 Equal
Medium 15 15 Horizontal
Large 25 42 vertical

TABLE III
TYPES OF VMS USED IN PERFORMANCE EVALUATION

Name CPU capacity (MIPS) Price per hour
t2.large 2 $0.0928
t2.xlarge 4 $0.1856
t2.2xlarge 8 $0.3712

B. Results and discussions

This section discuses and investigates the results of applying
the resource estimation and provisioning framework on three
different combined workflows. We evaluated the association
between the variation in model parameters (window size,
arrival rate, and throughput) and workflow scalability (vertical
and horizontal), and optimization parameters (execution time
and monetary cost). For each model parameter, simulation
is carried out 30 times, and average values are used for
comparing the performance of Full Mode, CWRPO, and
Random Selection techniques. We varied model parameter
values in range of 25% to 175%. Relative percentages have
been proposed due to the variation in parameter values among
workflow tasks.

1) Window size: is the time length of processing and
aggregating incoming data stream. Figures 3-5 show the results
of varying window size on execution time and monetary
cost. CWRPO demonstrates high stability in controlling the
workflow execution time with increase in window size length.
In Fig 4 and 5, CWRPO shows slight difference execution
time optimization with horizontal scalability over vertical
scalability. With horizontal scalability, CWRPO was able
to produce cost reduction linearly with increase in window
size with about 80% reduction compared to Full-Mode tech-
nique. This is refers to ability to cluster/group higher number
tasks/applications and performs periodic resource previsioning
in an effective manner comparing to vertical scalability with
30% maximum cost reduction. This allows IoT applications
to effectively produce more data either by adding more IoT
devices (horizontal scaling) or dividing the incoming data load
on applications (vertical scaling).

2) Arrival Rate: Results from Fig 6-8 show that CWRPO
can have steady control on the incoming arrival rate under the
constraints of queueing system and throughput. For all sim-
ulated workflow structures, CWRPO demonstrated execution
time reduction compared with other techniques. However, Fig
8 show less efficiency in execution reduction with 14% on
average, compared to 25% from Fig 7. This can be explained
by recognizing the high efficiency in cost reduction with
average 60% and 40% in case of vertical and horizontal
scalability, respectively. In fact the impact of arrival rate on
monetary cost is strongly related with throughput constraint.
As the constraint is relaxed, the algorithm will try to drop as
many as possible of incoming stream messages. This scenario
is convenient for IoT application models where performance is
not aligned to generated data volume. For instance, modeling
of rare phenomena prediction such as Earthquakes and floods.
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Fig. 3. Window size variation impact on the Small workflow
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Fig. 4. Window size variation impact on the Medium workflow
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Fig. 5. Window size variation impact on the Large workflow

3) Throughput: In case of throughput, we varied the con-
straint in range 40-70%. Fig 9-11 show that monetary cost
is exponentially increased while throughput is moving to it’s
peak value. In complex workflows, Fig 10 and 11, the increase
in throughput value drives CWRPO to add more resources to
allow processing more data. For example, in vertical scaling
example, Fig 11, a 400% additional cost is required when
moving from 40% to 70% throughput. Setting-up the through-
put constraint is an application and performance dependent, in
which, advanced heuristics algorithms and tunning techniques
can produce significant cost reduction with complex and long-
term combined workflow execution.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented a resource estimation and
provisioning framework, CWRPO, for combined workflows
which are integration of stream and batch applications. The
framework aims to generate optimized workflow configuration
plan in which the workflow execution time and monetary
cost can be reduced. We developed a simulation environment
to evaluate the the influence of resource provisioning model
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Fig. 6. Arrival rate variation impact on the Small workflow

parameters, namely, arrival rate, window size and through-
put, on the optimization objective. In addition, we applied
the framework on different workflow structures with various
scalability factor.

We compared our technique (CWRPO) with baseline (Ran-
dom Selection) and Full Mode techniques. Overall, CWRPO
demonstrates promising execution time and cost reduction in
most of parameter variations for the three workflow cases.
Apart from other parameters, window size has the obvious
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Fig. 7. Arrival rate variation impact on the Medium workflow
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Fig. 8. Arrival rate variation impact on the Large workflow
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Fig. 9. Throughput variation impact on the Small workflow
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Fig. 10. Throughput variation impact on the Medium workflow
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Fig. 11. Throughput variation impact on the Large workflow

influence on both execution time and cost. Results showed that
CWRPO was able to control through the efficient adoption of
task clustering and periodic resource provisioning techniques.
In addition, results showed the correlation between arrival rate
and throughput. IoT-based workflows can have efficient cost-
reduction with minimized throughput constraint. Furthermore,
the analysis highlighted the sensitivity of optimization objec-
tive to throughput constraint, and the necessity of building
efficient tunning techniques to guarantee reasonable margin
of workflow execution optimization.

In the future, we are planning to conduct more experiments
on more complex combined workflows with different varia-
tions of data workloads. We also planning to extend the work
by adding components of workflow scheduling and model
parameters tunning.
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