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Abstract. Mobile cloud computing is a platform that has been used to
overcome the challenges of mobile computing. However, emerging data-
intensive applications, such as face recognition and natural language
processing, imposes more challenges on mobile cloud computing plat-
forms because of high bandwidth cost and data location issues. To over-
come these challenges, this paper proposes a dynamic resource allocation
model to schedule data-intensive applications on integrated computation
resource environment composed of mobile devices, cloudlets and public
cloud which we refer as hybrid mobile cloud computing (hybrid-MCC).
The allocation process is based on a system model taking into account dif-
ferent parameters related to the application structure, data size and net-
work configuration. We conducted real experiments on the implemented
system to evaluate the performance of the proposed technique. Results
demonstrate the ability of the proposed technique to generate an adap-
tive resource allocation in response to the variation on application data
size and network bandwidth. Results reveal that the proposed technique
improves the execution time for data-intensive applications by an aver-
age of 78% and saves the mobile energy consumption by an average of
87% in compared to using only a mobile device while the monetary cost
increased only 11% due to using cloud resources and mobile communi-
cation.

Keywords: Hybrid Mobile Cloud Computing · Data-Intensive Mobile
Applications · Offloading Technique · Mobile Application Scheduling ·

Resource Allocation · Application Execution Modelling

1 Introduction

The use of mobile devices such as smartphones and tablets underwent a tremen-
dous increase due to the advancement in functionalities supported by enhanced
features such as high connectivity, faster CPU, large memory, and sophisticated
sensors. In 2019, it is estimated that 46% of the internet traffic will be gener-
ated by mobile devices with an estimated 30.6 Exabyte generated monthly [7].
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Although mobile devices are now equipped with considerable high-performance
computation resources, they still face major challenges in meeting the require-
ments of computation-intensive and data-intensive mobile applications.

Cloud Computing has been extensively proposed to overcome the shortcom-
ings of mobile computing. Cloud computing provides computation and storage
as services in a highly scalable and secure manner. Satyanarayanan et al. [19]
argue that cloud computing model is potentially the best solution to solve the
deficiencies in mobile device resources. The integration of mobile computing and
cloud computing is known as Mobile Cloud Computing (MCC) [5]. MCC aims
to augment mobile devices by improving and optimizing their computing capa-
bilities while performing compute-intensive tasks in cloud-based resources [22].
Migrating resource-intensive computations from smartphone devices to the cloud
via wireless communication technologies are refer to the concept of computation
offloading. Computation offloading has been studied intensively in the literature
and different techniques have been proposed for optimizing energy consumption
and meeting user Quality of Service (QoS) metrics such as response time and
monetary cost. These techniques include computation augmentation [1], device
cloning [6], nearby-resource computation [19], provisioning middleware [10,12,17]
and context-aware and profiling [13,22]. While there are some works about com-
putation offloading, most of them are limited to computation-intensive applica-
tions which confined on simple MCC environment.

In this work, we propose a dynamic resource allocation model to sched-
ule data-intensive applications on integrated computation resource environment
composed of mobile devices, cloudlets and public cloud which we refer as hybrid
mobile cloud computing (hybrid-MCC). We consider hybrid-MCC to construct
new efficient MCC resource models. Moreover, we model a data-intensive mo-
bile application scheduling and allocation as a multi-objective optimization prob-
lem for hybrid-MCC. Data-intensive mobile applications could be face recogni-
tion, data analytics and natural language processing [2]. The work contribution
can be listed as:

– Multi-objective optimization of device energy and monetary cost on the
hybrid-MCC environment under the constraints of mobile device energy and
task deadline.

– Propose a data-aware offloading technique for data-intensive applications on
hybrid-MCC environment.

– Performance evaluation of the proposed technique using real experiment and
simulation under various working conditions.

The rest of the paper is structured as follows. In Section 2, we investigate the
related work on task scheduling and allocation optimization on MCC. Section 3
presents an overview of the system architecture as a hybrid-MCC environment.
Application execution models and problem formulation are described in Section
4, while the proposed data-aware offloading technique explained in Section 5.
The model performance evaluation and experimental results are discussed in
Section 6. Section 7 provides conclusions and future work.
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2 Related Work

In this section, we review the existing works on task scheduling and allocation
optimization on MCC from different perspectives based on different optimization
objectives.

It is critical for mobile applications to deliver complex high-performance
functionalities at a lower energy level. Mobile device I/O processing and net-
work communications are energy-hungry components [1]. Offloading heavy tasks
to the cloud can reduce energy consumption in an efficient way. Abolfazlia et
al. [1] showed that mobile computation augmentation can deliver intensive com-
putation to mobile users, save device energy use and prolong battery life. Differ-
ent energy-based models have been proposed in literature such as: mobile device
cloning in remote resources [6], code offloading and migration [8], application and
network profiling [11], and application decomposition and reusability [10,15].

However, the aforementioned energy-based MCC solutions focus on appli-
cation code complexity migration for device energy optimization and do not
consider the variation of context parameters such as input data size, network
bandwidth, and corresponding data communication cost. Mobile network per-
formance has a significant contribution to improving application responsiveness
and thus optimizing the energy consumption [4]. Offloading to nearby resources
such as cloudlets [19] can enhance application responsiveness and availability.
The decision to run an application locally or remotely is complicated and re-
quires steady monitoring of network conditions and application profiling [10].

Data-intensive applications such as customized data analytics services, natu-
ral language processing, and face recognition are resource-intensive applications
that require machines with powerful CPUs and huge memory space to load dy-
namic application code and data. These applications bring additional challenges
for energy and cost optimization [20]. Processing large data files on mobile de-
vices has direct overhead on device energy, whereas transferring large data files
over mobile networks can increase the device idle time, as well the total computa-
tion cost and time. The literature shows high attention to resource elasticity and
scalability. Resource-based MCC optimization models focus on cloud resource
scaling and VM parallelism [12], elastic applications segmentation and deploy-
ment on hybrid-MCC and workflow-aware execution partitioning [17]. Sanaei
et al. [18] highlighted the significance of having intelligent and scalable context-
aware systems for mobile cloud applications that are capable of handling dynamic
mobile environment.

For cost optimization, Nan et al. [16] studied the challenges of data-intensive
mobile applications. The study uses monetary cost optimization as a significant
factor to enhance user QoS. Minimizing monetary cost and enhancing customers
QoS require an efficient cost optimization model. Zhou et al. [21] proposed a
three-tier MCC middleware that empowers programmers with computation al-
ternatives based on the application cost model and the offloading decision maker.
Even though the proposed model includes the task data size in generating an
optimized execution application tasks plan, the data size is marginally small and
cannot reflect the scenario of data-intensive application scheduling on MCC.
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The main common issue among the researches above is the lack of consider-
ation the contribution of data size and MCC application complexity in building
MCC architectures. To overcome this shortcoming, we propose an optimization
technique for execution data-intensive MCC applications on the hybrid-MCC
environment.

3 System Architecture

In this paper we propose a data-intensive mobile application offloading optimiza-
tion framework on hybrid-MCC environment. The environment leverages three
types of resources, namely, public cloud, cloudlet and mobile device. The public
cloud provides high powerful and scalable resource. Cloudlet provides computa-
tion service to the mobile clients for sensitive requests. These resources can be
accessed via Wi-Fi or cellular network. For a mobile device, we assume its ability
to perform local computation and storage under the constraints of energy and
wireless interface.

Fig. 1. Proposed hybrid-MCC offloading decision optimization framework.
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The proposed offloading optimization framework consists of components that
provides services of context monitoring, decision making and application execu-
tion. Fig. 1 illustrates the proposed framework.

The context monitor module is responsible for profiling context parameters
at run time and supports the decision maker with the energy and monetary
cost estimations. The framework offers three profilers, namely, device profiler
for energy usage, network monitor for available mobile network information and
application profiler to record the heuristic data about application execution with
awareness to context information of network bandwidth.

The decision-making module is a QoS optimizer which aims to find the best
application execution plan on a solution space where each solution is estimated
by the cost estimator. The decision is based on user QoS and estimated execution
time, total device energy and monetary cost.

The execution module is responsible for running the received application
execution plan from the decision maker. It has three main components: The
resource handler to manage access to resources for computation and storage,
the communication handler to manage the communication networks between
resources and task manager for running application tasks.

4 System Modelling and Problem Formulation

This section provides the modelling of data-intensive applications and the hybrid-
MCC environment. Table 1 describes the mathematical notations used in the
problem formulation.

4.1 Task Modelling

We assume the representation of a data-intensive MCC application A as set of
independent tasks. An application A is modelled as:

A = {t1, t2, . . . , tn} (1)

where n is number of tasks. Each task ti is modelled as:

ti = {Li, si, wi, ∂i} (2)

We have included data size and location parameters in task modelling to
serve the objective of building a data-aware optimization model for scheduling
mobile application tasks on a hybrid-MCC environment.

4.2 Resource Modelling

The system assumes three computation resources, namely, public cloud, cloudlets
and mobile devices. A mobile device Pm is modelled as:

Pm = {α, βdown, βup, βcost, d, e, wm} (3)
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Table 1. Problem formulation notations

Symbol Definition

ti Application Task i

Li Task input file location, either locally or remotely

si Task input size

wi The number of task execution instructions

∂i Task deadline

βdown, βup Available network download and upload bandwidth

βcost The monetary cost of data communication using mobile network

d Mobile device storage

e Available device energy (Joule)

α Available device memory

wm The device processing power

pcost Cost of processing in a cloud machine

wcloud Processing power of a cloud machine

C Estimated total monetary cost of the application

E Estimated total energy consumption in the mobile device

Dti Estimated execution time for task ti
ωi Task ti data size sensitivity factor

βs, βr Network bandwidth between data location and computation target

l The network latency

DW
ti The task waiting time in a remote server

λ The mean rate of arrival task execution request to a remote server

Lq The mean number of task requests in the queue

MW Application waiting time

A mobile device is connected to a cloudlet and the public cloud via Wi-Fi or
cellular networks. A cloudlet or public cloud virtual machine Pcloud is modelled
as:

Pcloud = {βdown, βcost, pcost, wcloud} (4)

4.3 Application Execution Models

This section describes the cost estimation models involved in formulating the
mobile application scheduled to run the application tasks in the hybrid-MCC
environment. In order to find the application execution plan, three estimation
values need to be calculated, namely, task execution time, total mobile energy
consumption and total monetary cost.

Task Execution Time Model The task execution time for task ti is the sum
of task processing time DP

ti in the target computation environment Ptarget, data
communication time DC

ti and task average waiting time DW for remote execution
which can be calculated by using Little’s rule [14].

Dti = DP
ti +DC

ti +DW (5)
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DP
ti = wi,target + (si ∗ ωi) (6)

DC
ti =

si
min(βs, βr)

+ l (7)

DW =
Lq

λ
(8)

Mobile Device Energy Model The energy consumption in the mobile device
E is estimated by calculating EP the total processing energy consumed by the
mobile device, EW the waiting energy particularly when the local execution time
is less than the remote execution time, since the system assumes parallel tasks
execution among the computation environment and EC which is mobile energy
consumption for data transfer communication.

E = EC + EP + EW (9)

Ei
P = Dti

P ∗ εiP (10)

EP =

m∑
i=1

Ei
P (11)

MW = max(0, (

m∑
i=1

Dti
P −max(

c∑
i=1

Dti
P ,

cl∑
i=1

))Dti
P )) (12)

EW = MW ∗ εW (13)

EC =

m∑
i=1

Dti
C ∗ εC (14)

Where:

–
∑m

i=1Dti
P ,

∑c
i=1Dti

P ,
∑cl

i=1Dti
P : are the total processing time for all

tasks executed locally (mobile device) and remotely (the public cloud and
cloudlet), respectively. We consider the waiting energy consumption only if
the waiting time MW has non-negative value.

– εi
P , εW , εC : the estimated energy consumption in the mobile device for task

ti, remote execution waiting and data communication, respectively.
– m, c, cl: the number of tasks to be executed in mobile device, the public

cloud and cloudlet, respectively.

Monetary Cost Model The monetary cost represents the amount of money
to run the mobile application on the proposed hybrid-MCC environment. This
includes two parts: total remote task processing cost CP in cloudlet and the
public cloud and total data communication cost CC .

C = CP + CC (15)
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CP =

c∑
i

Ci
P (16)

Ci
P = Dti

P ∗ pcost (17)

CC =

n∑
i

(si ∗ βcost) (18)

4.4 Problem Formulation

The main objective is to find the best mobile application offloading plan in
which the total energy consumption on the mobile device and the total monetary
cost are reduced in respect to individual task deadline and available mobile
battery energy. The offloading plan represents tuple for each task ti and the
selected computation environment among local execution on the mobile device
Pm, the cloudlet or the public cloud Pcloud. Precisely, the optimization problem
is formulated as a monetary cost (C) multiplied by mobile energy consumption
(E) due to the assumption of equal contribution on the optimization and the
difference on both measurement units:

min(C ∗ E) (19)

Subject to:

Dti < ∂i , ∀ti ∈ A
E < e

5 Proposed Data-aware Offloading Technique

Mobile application offloading aims to augment mobile device capabilities by mi-
grating computation to more powerful resources. In this work, we propose a
data-aware offloading technique to study the contribution of data size for mo-
bile application offloading decision in hybrid-MCC environment. To accomplish
this objective, we adopted Particle swarm optimization (PSO) [9] as evolutionary
search optimization technique to find the best offloading plan based on optimiza-
tion objective in (Eq. 19). This section discuses the proposed offloading technique
in which an optimized tasks allocation and scheduling plan is generated.

PSO is an evolutionary computational technique that optimizes a problem
by iteratively trying to improve a candidature solution with respect to quality
cost measurement. It simulates the behaviour of movement organisms in a bird
flock or fish schools. In our approach, a particle represents randomized appli-
cation execution plan on available resources. Fig. 2 provides an example of a
particle position. There are ten tasks to schedule. In such case, a particle is
ten-dimensional and its position has ten coordinates. The coordinate index (co-
ordinate 1 through coordinate 10) maps into tasks (t1 through t10). The value
of each coordinate is a real number in range [0..3). Coordinate value in range
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Fig. 2. Example of the encoding of a particle’s position.

[0..1] correspondent task is allocated to mobile device and Coordinate value in
range (1..2] correspondent task is allocated to cloudlet while Coordinate value
in ranges (2..3) correspondent task is allocated to the public cloud.

To reflect the objective of scheduling tasks on the defined computation en-
vironment, the fitness function is used to determine the goodness of a particle
position by estimating the optimization value for a given solution according to
the total monetary cost C (Eq. 15) and the total energy E (Eq. 9) consumed
by the mobile device. The fitness function accepts a PSO particle in which the
position represents an application tasks scheduling solution. Energy estimation
and cost calculation are based on task execution time D (Eq. 5) including pro-

Algorithm 1 Task scheduling for data-aware offloading

1: Inputs : set of application tasks T, computation resources R
2: Output : application tasks schedule S
3: Update resources’ metadata
4: Setting up PSO Environment P
5: Initialize PSO Particles P [NumP ] NumP : number of particles
6: P.gbest = inf Initialize global best gbest
7: for i = 1 to NumP − 1 do do
8: Randomize P [i].POS
9: FitCost = PSOFitFun(P [i].POS, T )

10: UpdateBestPos (P, P [i], F itCost)
11: end for
12: Run PSO Iterations
13: for i = 1 to NumL− 1 do do
14: for j = 1 to NumP − 1 do do
15: Calculate P [j].V ELOCITY
16: Update P [j].POS
17: FitCost = PSOFitFun(P [j].POS, T )
18: UpdateBestPos (P, P [j], F itCost)
19: end for
20: end for
21: MinCost = PSOFitFun(P.gbest.POS, T )
22: S = (P.gbest.POS,MinCost)
23: return S
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cessing, communication and waiting time. The data communication time DC

for task ti depends on task data location. DC is only considered if data stor-
age and computation environment are in different locations. The fitness function
considers the impact of DC time on mobile device energy and monetary cost.
Algorithm 1 shows the main steps of finding the optimal offloading scheduling
plan for data-aware mobile applications.

The task processing time DP is calculated based on task ti computation
requirement and task data size. The impact of data size is measured by exper-
imenting task processing with different data sizes. The processing time DP is
used to estimate task processing energy for local task execution, and task pro-
cessing monetary cost CP for remote execution. However, the system assumes
extra energy consumption when the mobile device is in idle state, this occurs
when total local execution is less than the maximum remote execution in cloudlet
or public cloud.

6 Performance Evaluation

Performance evaluation for the proposed data-aware offloading technique has
been conducted using two sets of experiments. The first set is a real experiment,
to validate the model by comparing the result of the proposed execution model
and offloading technique against real execution. For this experiment, we have
implemented a real MCC environment as illustrated in Fig. 1. In the second
experiment set, we used synthetic application data to evaluate the proposed
offloading technique.

6.1 Experimental Setup

The configuration of the hybrid-MCC resources includes a mobile devices, cloudlets
and public cloud which are listed in Table 2. We considered a single machine for
task processing in the public cloud and cloudlet. For mobile network bandwidth,
we conducted the experiment with three communication networks (3G, 4G, and
Wi-Fi). Table 3 presents details about bandwidth values for used networks. We
have recorded and used minimum and maximum bandwidth in real application
execution for each network type. Recorded values are used to build a uniform dis-
tribution model for the experimental work. We initialized the application tasks
structure with 30 tasks. Each task has the following properties:

Table 2. Computation Resources Configuration

Resource Type No. Cores Memory (GB)

EC2 Linux t2.2xlarge Intel Xeon 8 32

Cloudlet Intel Xeon 4 8

LG Nexus 5 Qualcomm 2 2
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Table 3. Communication Networks bandwidth

Network Type Min. Bandwidth (MB/s) Max. Bandwidth (MB/s)

3G 1.5 2.6

4G 3.9 9.5

Wi-Fi 10.8 20.5

Network Latency Min. Latency (s) Max. Latency (s)

Latency 0.6 11.5

– Computation requirement (task workload) DP : we used the workload model
proposed by Anglano and Canonico [3]. The model used to determine the
task deadline with 1000 s granularity. Task deadline values have been uni-
formly distributed with 205 s and 590 s for minimum and maximum time,
respectively.

– The task data file locations (L) are distributed randomly between the public
cloud server, the mobile device, and other cloud storage (i.e. AWS S3).

– Task data size (s) model: we assume three different scenarios for the appli-
cation data model to create each task, namely, small (20-200 MB), medium
(200-500 MB) and large (500-20000 MB).

– Task data sensitivity factor (w): the factor has the value between [0..1] which
measures the task execution response to the change of data size.

6.2 Model Validation

In this section, we provide the validation for the proposed execution model using
a real-time execution scenario. We run an application with 30-task of small data
model using both proposed model and real implementation for three different
communication networks.
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Fig. 3. Application execuation model validation using real experiments for three dif-
ferent communication networks
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Fig. 3 shows the comparison between the proposed model and real execu-
tion results in three different communication networks and three performance
metrics including execution time, mobile energy and monetary cost. The result
shows some discrepancies between the proposed model and real execution sce-
nario because of the difference in available bandwidth and network latency in
real execution scenario and the proposed model. We observed the major error
in 3G network. As you can see in Table 3, the bandwidth for 3G network is
between 1.5 and 2.6 but in real execution, the bandwidth is unstable because
of bandwidth fluctuation. The average errors for execution model are 8% for
execution time, 11% for energy consumption and 15% for the monetary cost.
Based on the observations, the proposed execution model is accurate enough to
use for offloading in the hybrid-MCC system.

6.3 System Evaluation and Experimental Results

After validation of the execution model, we used the similar setup to evaluate
the proposed offloading technique under different working conditions. We com-
pared the proposed technique with two other techniques including mobile only
and random offloading. The application tasks were demonstrated based on the
aforementioned data size scenarios. In addition, the performance measurements
that we used are execution time, mobile energy and monitory cost. Figures 4, 5
and 6 show the results of running the mobile application on three techniques for
three different communication networks.

Fig. 4 shows experimental results when using the 3G network. Fig. 4 (a)
illustrates that the proposed technique has significant execution time reduction
in comparison to the other two techniques for the three data size models. In
comparison to the random technique, execution time reduction increased from
25% in small data size to 56% in medium data size and 63% in large data
size. For the same experiment, the result of the proposed technique compared
to the mobile technique reduced the execution time by average 73% for three
data size models. Moreover, Fig. 4 (b) shows high mobile energy consumption
saving with increasing of the data size. For example, the proposed technique can
save mobile energy consumption around 57% in small data size, 74% in medium
data size and 78% in large data size in compared with the random technique.
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Fig. 4. System Performance Measurements with 3G Network for different data sizes
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Fig. 5. System Performance Measurements with 4G Network for different data sizes
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Fig. 6. System Performance Measurements with Wi-Fi Network for different data sizes

For the same experiment, the result of the proposed technique compared to
the mobile technique can save the mobile energy consumption by average 78%
for the three data size models. Moreover, Fig. 4 (c) highlights the ability of
the proposed technique to save the monetary cost around 2-3% compared to the
mobile technique and cost saving of 50% compared to the random technique. This
reveals the ability of the proposed technique in controlling the monetary cost as
execution in the mobile environment has only communication cost while other
two techniques have communication cost and cloud resources cost. In general,
while the data size increasing the importance of the proposed technique to handle
the data-intensive application is increasing.

Similar results can be observed in case of 4G network as shown in Fig. 5.
Fig. 5 (b) result shows energy consumption saving of the proposed technique
compared with the mobile technique with 89% for large data size compared to
80% using 3G network due to higher energy consumption of 4G network. Also
Fig. 6 (b) shows average 90% and 84% in saving mobile energy consumption
of the proposed technique compared with the mobile technique and the ran-
dom technique, respectively for three data size model using Wi-Fi network. This
again confirms the significance of the proposed model to save energy while using
different communication networks.

Based on the results, the proposed technique improves execution time for
data-intensive application for large data size sets compared to the random tech-
nique by average of 51% and saving mobile energy consumption by average of
77% while the average monetary cost saving improvement is 48%. Moreover,
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the proposed technique improves execution time for data-intensive application
for large data size sets compared to the mobile technique by average of 78%
and saving mobile energy consumption by average of 87% while the average
of monetary cost is only 11% higher due to using cloud resources and mobile
communication.

In summary, the proposed technique shows high capability in handling data-
intensive applications in compared with the mobile and the random techniques
through reducing mobile energy consumption and monetary cost. It can be stated
that for data-intensive applications, it is critical to use the proposed technique
since the execution time and mobile energy consumption will be very high, but
for small data size applications we could possibly use the mobile technique or
the random technique.

7 Conclusions and Future Work

We proposed a QoS-aware resource allocation model to schedule data-intensive
mobile applications on hybrid-MCC environment. The model generates an ap-
plication execution plan with consideration to different aspects according to
application complexity, input data size, available network bandwidth, and avail-
able mobile device energy. Results indicated sufficient behaviour particularly
with execution time and energy. As a future work, we will study the integration
of edge computing as improvement to the hybrid-MCC environment to han-
dle data-intensive MCC application requirements. Moreover, we are planning to
study task queuing behaviour on remote servers. Furthermore, we are planning
to build a prediction framework for generalizing offloading decision according to
most significant parameters.
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