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Abstract

In this paper we present and evaluate a novel
method for tele-operating a humanoid robot via
a full body motion capture suit. Our method
does not use any a priori analytical or math-
ematical modeling (e.g. forward or inverse
kinematics) of the robot, and thus this ap-
proach could be applied to the calibration of
any human-robot pairing, regardless of differ-
ences in physical embodiment due to the hu-
man’s body, the motion capture device, and/or
the robot’s morphology. Our approach involves
training a feed-forward neural network for each
DOF on the robot to learn a mapping between
sensor data from the motion capture suit and
the angular position of the robot actuator to
which each neural network is allocated. To col-
lect data for the learning process, the robot
leads the human operator through a series of
paired synchronised movements which capture
both the operator’s motion capture data and
the robot’s actuator data. Particle swarm opti-
misation is then used to train each of the neu-
ral networks. The results of our experiments
demonstrate that this approach provides a fast,
effective and flexible method for teleoperation
of a humanoid robot.

1 Introduction

Teleoperation is the operation of a machine at distance.
An early example of teleoperation was introduced in the
1940s, when Goertz [1] developed mechanical master-
slave manipulators for work with radioactive material.
More recent examples include the control of wheeled
robots for tasks such as bomb disposal and the Mars
Rovers. Advances in robotic hardware have seen the
emergence of sophisticated humanoid robots, such as
Honda Asimo, HRP-4C, Robonaut, and Aldebaran Nao.
Humanoid robots have advantages over robots with non-
human morphologies (e.g. wheeled robots) in that their

human-like form allows for the robot to take advantage
of urban environments designed by people for people.
For example, humanoid robots are well suited to using
human tools, opening doors, climbing staircases, and
so forth. The unstructured nature of the real world,
coupled with limitations in artificial intelligence and au-
tonomous robot behaviour, means that teleoperation of
humanoid robots is a more suitable approach to robot
control for some situations where dexterous and complex
movements are required in environments too dangerous
for humans (e.g. mining disasters, war zones, chemical
spills, nuclear accidents, space exploration, etc). Fur-
thermore, giving a robot a humanoid form allows in-
tuitive teleoperational control due to the similarities in
embodiment between the human master and the robot
slave. Initiatives such as DARPA’s ! robotic challenge in
which humanoid robots are used in disaster and rescue
situations highlight the potential benefits of teleopera-
tion of humanoid robots.

Our aim is provide a general method of mapping hu-
man motions to robots, regardless of the robot’s form
or the device used for capturing human motion. In this
paper we present a system for teleoperating a humanoid
robot using a full-body motion capture suit. Our sys-
tem allows for a human to perform natural and fluid
motions, and for the humanoid robot to closely mimic
these motions in real-time. A key aspect of our approach
is the use of a machine learning process to calibrate the
human master with the robot slave, thus eliminating
the need for explicit kinematic modeling of the relation-
ships between motion capture data and robot actuator
commands. Apart from being difficult to establish the
mathematical relationships between human sensory in-
puts and robot motor angle outputs in general, explicit
kinematic modeling is always dependent on the partic-
ular type of hardware (both robot and motion capture
equipment) and any hardware changes would normally
require complete redesign of the system. With our ap-
proach, however, the system is easily scalable to vari-
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ous kind of robotic and motion capture equipment and
making equipment changes would only result a quick re-
training of the system, while all the software will remain
unchanged.

This paper is structured as follows: Section 2 outlines
the problem domain of designing and building user in-
terfaces for teleoperation of humanoid robots. Section 3
presents related literature in the use of motion capture
and machine learning for teleoperation tasks. In Section
4, our approach is described. Section 5 highlights our
results, and in Section 6 we discuss the implications of
our work, and present concluding remarks.

2 Problem Domain

The development of humanoid robots has brought in-
creased research interest in teleoperation. As humanoid
robots are bipedal and have a large number of degrees of
freedom, the main challenges in teleoperating humanoid
robots concern how to best satisfy the operator’s desired
behaviour for the robot given the (dimensional) differ-
ences between the input capture device and the robot,
while also maintaining the robot’s stability.

Early approaches to teleoperating humanoid robots
captured user intention through the use of graphical user
interfaces (GUIs), joysticks, buttons and keyboards. For
example, Takanobu et al [2] developed a GUI for teleop-
erating a humanoid robot in Italy from Japan. Buttons,
slider bars, and text boxes are used to capture user in-
put to control specific parts of the robot (such as the
camera/ “eyeballs” and neck), or to trigger pre-defined
motions of the arms such as signaling “hello” or “bye”.
Sian et al. [3] control a HRP-1S humanoid robot using
joysticks. As the joysticks used to control the humanoid
capture a smaller number of inputs than the robots num-
ber of degrees of freedom, button presses are used to
select the particular motors on the robot they wish to
control. Limitations of these approaches include lack of
complete and simultaneous control over every DOF (de-
gree of freedom) on the robot, and that complex motions
or behaviours need to be pre-defined.

One strategy to allow the user to simultaneously con-
trol multiple DOF on a humanoid robot is to increase
the robot’s autonomy, and to allow the operator to se-
lect different modes of operation. By having the robot
calculate complex trajectories and kinematics, low di-
mensional commands can be used to control the robot.
For example, Stilman et al. [7] teleoperate a 38 degree-
of-freedom HRP-2 humanoid robot used to manipulate
a caster wheeled table carrying loads as heavy as 55kg
using a single three-axis joystick. Through the use of
button presses, the user can decide whether to control
the robotc hands, move the robot, or to make the robot
hold the table and move it around.

3 Motion Capture and Neural
Networks for Teleoperation

3.1 Motion Capture

Motion capture has had a significant impact on robotics.
Motion capture has been used for not only teleopera-
tion, but also for improving humanoid locomotion [22]
and learning from demonstration [13; 16; 17]. Early ap-
proaches to motion capture for teleoperation required
large master arms or exoskeletons which impose physical
limitations upon the wearer. Later, custom built motion
capture systems were built using inertial measurement
units, e.g. [14], or flex sensors and photo detectors [23],
and shape tape [15]. Most recently, many new motion
capture products have come onto the market, ranging
from the cheap but somewhat inaccurate (e.g. Microsoft
Kinect, Nintendo Wii) to the (relatively) expensive but
highly accurate Xsens motion capture suit (described in
Section 4.1).

Setapen et al. [21] use motion capture to teleoperate a
Nao humanoid robot (with the aim of teaching the robot
new skills and motions), using inverse kinematic calcu-
lations for finding the mapping between motion capture
data and robot actuator commands. Matsui et al. [22]
use motion capture to measure the motion of both a hu-
manoid robot and a human, and then adjust the robot’s
motions to minimise the differences, with the aim of cre-
ating more naturalistic movement on the robot. Song
et al. [23] use a custom-built wearable motion capture
system, consisting of flex sensors and photo detectors.
To convert motion capture data to joint angles, an ap-
proximation model is developed by curving fitting of 3rd
order polynomials.

3.2 Neural networks for teleoperation

The most common approach for teleoperating humanoid
robots via motion capture is through the use of kine-
matic modeling to calculate effector end-points. Forward
kinematics refers to the use of equations to compute the
position of an end-effector (e.g. a hand) from specified
values for the joint parameters (e.g. the angles of the
shoulder, elbow, and wrist). Conversely, inverse kine-
matics refers to the use of the kinematics equations of
a robot to determine the joint parameters that provide
a desired position of the end-effector. With such ap-
proaches, changes in hardware require new analysis and
kinematic calculations. Our aim is to remove the need
for such calculations.

Artificial neural networks are capable of approximat-
ing highly complex nonlinear functions. As such, they
are suitable for learning the mapping between the data
produced by sensor devices used to teleoperate robots
(such as joysticks and motion capture devices) and the
actuator command values required to control the robot.



Tejomurtula and Kak [24] demonstrated how neural net-
works could be used to solve a variety of inverse kine-
matics problems in robotics, arguing that the benefits of
using neural networks to solve these problems include re-
ducing software development labour costs, reducing com-
putational requirements, and that they can approximate
solutions to problems where algorithms or rules are not
known and cannot be derived.

There are numerous examples of research in which ar-
tificial neural networks are trained to control robotic
devices. Smagt and Schulten [25] train a neural net-
work to control a rubber robotic arm (designed to re-
semble a skeletal muscle system). Jung and Hsia [26]
use neural networks to fine tune robot input trajecto-
ries in simulation. Larsen and Ferrier [27] train a neural
network using visual information to map the relation-
ship between the motor position and the pixel location
of a large deflection, planar, flexible robot manipulator.
Wang and Bai [28] use feed-forward neural networks with
back-propagation to improve the positional accuracy of
an industrial robot by finding the inverse kinematics of
a simulated 2 and 3 link manipulator arms in different
configurations, and then using a lookup table to select
the appropriate weights at run-time. Neto et al. [18] em-
ploy low cost accelerometers attached to a human arm,
and use artificial neural networks to recognise gestures
for control of an industrial robotic arm. Later, Neto et
al. [19] use a similar approach with a Nintendo Wii con-
troller and an industrial robot arm. Morris and Mansor
[20] use neural networks to find the inverse kinematics
of a two-link planar and three-link manipulator arms in
simulation.

The most similar approach to the one presented in this
paper is that of Aleotti et al. [15], who use neural net-
works to learn a mapping between the positions of a hu-
man arm and an industrial robot arm. In their approach
the human operator wears the ShapeTape sensor on an
arm and copies a series of pre-programmed robot move-
ments, and a neural network for each DOF is trained us-
ing back-propagation to find a mapping between the op-
erator’s arm positions and the robot’s arm positions. In
this work the authors used absolute positions of human
arm joints (obtained from the ShapeTape) for training
the neural network.

3.3 Limitations of Prior Art

The paper of Aleotti et al. [15] reports a relatively small
mean error of 8 degrees for the neural network approxi-
mating the training examples, but the supporting video
and authors’ conclusions show that the resulted system
seemed to be overall unusable. The resulting movement
of the robot was in many situations quite different from
the motion demonstrated by the human operator and
the similarity between the two was often hard to depict.

The system was trained on absolute hand joint posi-
tions resulting from a limited set of poses, where opera-
tor tried to perfectly match the pose of the robotic arm.
The errors outside of the training examples appeared to
be very large, which the authors failed to explain. The
use of absolute positions of operator’s joints applied sig-
nificant limitations on the overall usability of such sys-
tem, as it is required for the human operator to always
train and use the system while standing in exactly the
same position and orienting all body parts in the same
way as in all prior training sessions. As the result of the
errors and aforementioned limitations, further continu-
ations of the work on tele-operating robots conducted
by the authors and their successors drifted away from
machine learning.

3.4 Our Contribution

We made significant progress in comparison to existing
work. In contrast to operating a robotic arm with 6
degrees of freedom and a fixed position, the developed
system described in this paper allows to successfully tele-
operate a mobile humanoid robot with 23 degrees of
freedom through full-body motion capture. In contrast
to Aleotti et al. [15] we use rotational data from hu-
man operator joints instead of relying on positions, as
a set of joint rotations can be used to uniquely deter-
mine/identify any pose of the human, while positions,
in many situations, are not enough to capture certain
motions (e.g. imagine a human standing upfront and
turning the head to the left: there is no position change
for any joints, while there is a change in neck rotation).

As we intend to use our approach in disaster recovery
scenarios, it is not acceptable to demand for the operator
to train and use the system while standing in the same
place and always facing the same direction. To overcome
this limitation, instead of using absolute positions and
rotations - we utilised relative rotations, so that both
training and operation of the robot could be performed
in a flexible way.

During their training, Aleotti et al. [15] used a lim-
ited set of poses, which we believe was a major cause of
system error. In our system we have replaced poses by
aerobics style exercises, where a human had to repeat a
number of simple movement demonstrated by the robot.
Each movement took a few seconds to perform, but it
covered 2-3 repetitions of using the entire range of pos-
sible motor movement on the robot end and generated
hundreds of data samples for training.

As the result, the developed system was successfully
tested on performing a wide range of arbitrary motion,
manipulating objects and even walking. The video show-
ing the system in action is available at? confirms that

2http:/ /www.youtube.com/watch?v=ggLgel Rw2z4



there is little visible error in the resulting robot move-
ment, but the system suffers from some lag. Figure 1
shows the robot mimicking the pose of the human oper-
ator.

Further we outline the details of our approach.

4 Owur Approach

Our immediate aim is to teleoperate a humanoid robot
using full body motion capture, but without the use of
any a priori analytical or mathematical modeling (e.g.
forward or inverse kinematics). Our longer term vision is
to develop a seamless method for calibrating any human-
robot teleoperation pairing, regardless of differences in
physical embodiment due to the human’s body, the mo-
tion capture device, and/or the robot’s morphology. Ide-
ally such a system would allow individual users to quickly
and easily tailor their idiosyncratic/chosen movements
and gestures for accurate and intuitive control of any
robotic system.

In this paper we present and evaluate an approach for
teleoperating a humanoid robot which involves training a
feed-forward neural network for each DOF on the robot
to learn a mapping between sensor data from motion
capture and the angular position of the robot actuator
to which each neural network is allocated. To collect
data for the learning process, the robot leads the human
operator through a series of repeated paired synchro-
nised movements which capture both the operator’s mo-
tion capture data and the robot’s actuator data. Particle
swarm optimisation is then used to train each of the neu-
ral networks. The system is tested using an Aldebaran
Nao and an Xsens full body motion capture suit. Em-
pirical results detailing the neural networks’ kinematics
approximations are presented.

4.1 Equipment, Hardware and System
Architecture

Robot

We use an Aldebaran Nao humanoid robot. The Nao is
approximately 58cm high, with 25 DOF. See Figure 1.
In this experiment we used the “H23” version of the Nao
robot, which is specifically designed for robot soccer and

does not have working wrists or hands (thus it has 23
DOF)3.

Motion Capture Suit

As an interface to control the Nao robot we employ
a high precision full-body motion capture suit, Xsens
MVN3%. Only recently motion capture suits similar to

3Note that in our experiments at UTS we used the H23
soccer robot. At UWS we have access to the H25 robot (most
photos of robots in this paper are with UWS’s H25 model),
and future work will likely involve using the robot’s hands.

4For more information, visit the manufacturer’s website
http://www.xsens.com/
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Figure 1: The Nao humanoid robot. The Nao
is approximately 58cm high, with 25 degrees of
freedom. Picture source: http://www.aldebaran-

robotics.com/en/Discover-NAO /nao-datasheet-
h25.html

Xsens MVN reached the level of precision when they
can correctly capture real-time motion of a human body
with no significant data errors. This equipment comes in
a form of a Lycra suit with 17 embedded motion sensors,
illustrated in Figure 2. The suit is supplied with MVN
Studio software that processes raw sensor data and cor-
rects it. It also uses inverse kinematics to cross-verify the
data and to estimate the parameters of additional body
joints. As the result, MVN studio is capable of sending
real-time motion capture data of 23 body segments us-
ing the UDP protocol with the frequency of up to 120
motion frames per second. The key elements of the data
being transmitted are absolute (X,Y,Z) position of each
segment and its absolute (X,Y,Z) rotation.

Figure 2 shows the person wearing the XSENS MVN
suit and displays the locations of inertial sensors. Fig-
ure 3 outlines the resulting joints that are being com-
puted by the MVN Studio software and used in our ex-
periments.

Architecture

The motion capture suit transfers via wireless communi-
cation sensor data to a software application running on
a personal/laptop computer. A custom built C++ soft-
ware application running on the computer performs data
preprocessing (detailed in Section 4.2), executes both the
training of the neural networks and the operation of the
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Figure 3: Human body joints used in motion capture.
Picture source: XSENS MVN User Manual.

neural networks during teleoperation mode®. Commu-
nication between the Nao robot and the off board com-
puter is via TCP/IP protocol (both wireless and Ether-
net communication was used).

5The neural network code could just as easily run on board
the robot, as demonstrated by our previous work [29]. For the
purposes of rapid prototyping an off board training system
was implemented for this research.

4.2 Experimental Setup
Data Collection

To find a mapping between human movement and robot
movement, motion data for both robot and human
needed to be collected and synchronized. To do this, the
robot was preprogrammed to perform a number of slow,
symmetric repetitive motions. The human watches the
robot, and is asked by the robot’s text-to-speech sys-
tem to copy the robot’s movements. Thus the robot,
much like a gym or fitness instructor, leads the human
through a series of slow, repetitive movements designed
to demonstrate the robot’s range of physical motion.
The human imitates the robot’s motion, and both the
robot’s motors’ angular position data and the human’s
motion capture data is streamed to an off-board com-
puter software application, where it is logged for use in
the machine learning process. An example robot motion
can be viewed online®.

The robot’s motions were simple to implement, and re-
quired specifying a start position, an end position, and a
speed of movement. Many of the motions resembled ex-
ercises a person would perform during sports like weight
training or aerobics. For example, to collect data for the
elbow a “bicep curl” is performed, while to collect knee
and hip data “squats” are performed. Figure 4 illustrates
the start and end points of some of these motions. The
motion would be demonstrated by the robot to the user
before the data logging process began, which allowed
the user the time to find a comfortable, repeatable cor-
responding motion. When user is ready to imitate the
robot, each motion is repeated by the robot for approx-
imately 5 to 10 repetitions (an arbitrary number chosen
to balance the competing goals of collecting numerous

Shttp://youtu.be/RgIQPtMIOXg



examples while minimising the data collection time).

Figure 4: Snapshots of robot motions which the hu-
man would mimic during the training process. Each
pair of pictures represents the start pose and end pose
of the movement. The motors used during the transi-
tion from start pose to end pose for each of the mo-
tions are as follows: (a), (b) and (c) shoulder pitch;
(d), (e), and (f) shoulder roll; (g) and (h) elbow roll;
(i) ankle roll, hip roll; (j) ankle pitch, knee pitch, hip
pitch (k) hip pitch. An example video of the robot
performing the “squat” motion (j) can be found at
“http://youtu.be/RgIQPtMIOXg".

During the paired movements between human and
robot, the robot’s sensor data was logged at 5 frames
per second for the entire duration of each repeated mo-
tion. To ensure motion capture data and robot sensor
data logs are synchronised, a “3, 2, 1”7 countdown is used
before commencing each repetitive motion. A slow but
arbitrarily chosen speed was used to allow the user to
closely follow the robot’s example movements. As with
the robot sensor data, motion capture data is logged at 5
frames per second. After the final repetition of each mo-
tion is completed, the data from both robot and human
is merged into a single log file containing a time series
of matched robot motor position sensor data and human
motion capture data, the format of which is described in
the next section.

Motion capture data preprocessing and
transformation to “relative rotations”.

The Xsens MVN motion capture suit produces raw data
in an absolute coordinate space. That is, its output val-
ues are specified in relation to a global origin coordinate

Figure 5: Calculating Relative rotations

in 3-dimensional physical space. In this 3-dimensional
space the origin corresponds to the physical world posi-
tion in which the motion capture suit was last calibrated,
Y axis points to magnetic north and Z axis points up.
As a consequence if the user is standing in two different
locations with the exact same posture, the output val-
ues of the suit will be different due to the two different
physical locations. Similarly for rotations, orienting the
suit operator body differently in space (while holding the
same pose) would modify the values of absolute rotations
of body joints.

To reduce the complexity of the learning problem, and
to allow our teleoperation system to be used regardless of
the user’s location and orientation, data pre-processing
was performed, which involved calculating positions and
rotations of the user’s body joints relative to other joints.
Rotational data was the main source of system input as
such data is enough to represent any human pose. Trans-
forming the raw rotational data involved calculating a
relative rotation, representing a comparison of two spe-
cific joints from the motion capture suit. For example,
if we consider the robot’s elbow roll motor and want to
use motion capture input for training this motor, there
is no exact corresponding sensor on the motion capture
suit. To approximate an “elbow” sensor value, we com-
pared the relative rotational movements of the forearm
sensor and the upper-arm sensor (see Figure 2). Likewise
the motion capture’s “knee” is derived by comparing the
upper leg with lower leg.

Table 1 describes the correspondences between suit
input values and robot output values. Please refer to
Figure 3 for understanding the inputs from the suit.

Figure 5 outlines the idea behind this preprocessing
step. In order for us to obtain the data that corresponds
to the leftShoulderPitch motor on the robot, we use the
rotational angle of the sensor located on the left elbow
of the human operator (labelled as LeftForeArm in Fig-



ure 3), but the rotation of this sensor is computed in
the coordinate system represented by absolute rotation
of the chest sensor (T8 in Figure 3), shown as (X, Y,
7’ ) in Figure 5. Thus, if operator turns the chest in
space, while holding the same pose, it will not affect the
relative rotation angle as the angle will be computed in
the updated coordinate system set by chest.

All the rotations in the system are represented in the
quaternion form [30]. In order to compute relative rota-
tions, we use the following equation:

Qroty,
QTOtrelatwe (CL, b) Q’l”Ota ( )

If we apply the above equation to the example from
Figure 5, Qrot,eiative(a, b) corresponds to the resulting
relative rotation (in the quaternion form) of the left el-
bow sensor (a) in relation to the chest segment (b).
The values of Qrot, and Qrot, represent the quater-
nions defining the absolute rotations of each correspond-
ing body segment.

The resulting quaternion rotation (that is shown as
headRot in the picture) can be represented as a matrix
of the following form:

QTOtrelative (CL, b) = [C]m q1,492, qS]T (2)

The values of this matrix are used as the training input
of the neural network.

Ensuring Robot Stability

To ensure robot stability, the robot’s ankle pitch and an-
kle roll motors did not employ neural networks for calcu-
lating their actuator commands. Instead, the position of
the robot’s ankles was calculated relative to the position
of the robot’s hips and knees, so that the robot’s feet al-
ways remained horizontal/parallel with the ground at all
times. In particular, the value of the ankle pitch motor
was determined by the value of the hip pitch and knee
pitch values of that particular leg. Similarly, ankle roll

Table 1: Relative 3-Dimensional Angular Rotations de-
rived from motion capture data.

Joint Rotations Sensor 1 Sensor 2
Left Shoulder LeftUpperArm T8
Right Shoulder | RightUpperArm T8
Left Elbow LeftUpperArm LeftForearm
Right Elbow RightUpperArm RightForearm
Left Knee LeftLowerLeg LeftUpperLeg
Right Knee RightLowerLeg | RightUpperLeg
Left Hip LeftUpperLeg Pelvis
Right Hip RightUpperLeg Pelvis
Left Ankle LeftFoot LeftLowerLeg
Right Ankle RightFoot | RightLowerLeg
Neck Head T8

was determined by the value of the hip roll motor on the
same leg of the robot. Lastly, the range of movement
of all of the leg motors on the robot was restricted to
ensure robot stability. In this initial study, no balance
controller used, nor was walking attempted. The robot
however was in standing position, and capable of move-
ments such as squatting, shifting weight from one foot to
the other, leaning forwards or backwards, and so forth.

DOF Restrictions

The Nao robot possesses motors for which there is no
corresponding joint on the human body. In particular,
Nao has two elbow motors, allowing the robot’s forearm
to rotate about the elbow in a manner that is impossi-
ble for a normal human being. To simplify the learning
problem, the Nao’s elbow yaw rotation was disabled (but
elbow roll is enabled) so the Naos elbow range of motion
more closely resembled that of a human’s. The Nao also
possesses two dependent hip yaw-pitch motors, which al-
low the robot’s knees/feet to point inwards or outwards.
However, they are not independent motors; i.e. these
motors mirror each other, whereas a human’s legs are
independent. For this reason the hip yaw-pitch motors
were disabled (permanently set at an angular position of
“0” radians for all motions).

4.3 Learning

The output of the data collection process is a series of
datasets containing the actuator values for every motor
actuator on the robot, and for the person a set of rela-
tive rotational angles of different parts of the body, as
described in Table 1. Initially there is a dataset for ev-
ery motion performed by the robot, but one new large
dataset if formed by merging the datasets. One feed for-
ward neural network is allocated for each actuator on
the robot (except those that have been disabled or over-
ridden, as described in previous sections). FEach neural
network has one hidden layer of 20 neurons. The neu-
ral networks are trained to approximate a function which
outputs the actuator value (a) based on the relative rota-
tions (ql, q2, g3, q4) of the corresponding sensors on the
motion capture suit, i.e. a = f(q1, ¢2, ¢3, ¢4). The func-
tion is represented by a matrix of values which represents
the weights of each node on each other. These weights
are optimised to approximate the function (training) as
closely as possible using particle swarm optimisation (50
particles and 50 generations). For this initial work, the
neural networks were trained manually offline, rather
than on board the robot. The training process for each
network is fast (a matter of a few seconds on a standard
personal computer). In previous work we have used the
same software tools (neural networks trained by PSO)
to successfully model non-linear real-time motor data for
robot proprioception [29].
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Figure 6: Left Shoulder Pitch training data and neural net approximation for a dataset comprised of 3 different

motions.

5 Results
5.1 Data

Examples of neural network approximations of the re-
lationship between motion capture data for a particular
human joint and its corresponding robot motor joint are
displayed in Figure 6 and Figure 7. Figure 6 represents
using relative quaternion rotations for the shoulder sen-
sor in the motion capture data to train the shoulder pitch
motor of the robot. Figure 7 shows the input motion
capture data and the comparison between the trained
neural network and the correct robot motor output for
the shoulder roll motor.

As can be seen in all data, a difficulty encountered
in the learning process of the neural networks was
accurately modeling both large movements and “still-
ness”. For example, in Figures 6 to 7 there are move-
ments/fluctuations in the motion capture data while the
robot’s equivalent joint is stationary. This may suggest
that in approximating the robot’s movement, other artic-
ulation points on the human’s body are being used, and
this information is not being provided to neural network
in our current model. It also reflects that while it easy
for a robot to remain perfectly still, it is very difficult
for a human being. Another source of noise is that the
user’s performance of the individual repetitions of each
motion varies considerably, as humans don’t have per-
fect control over their bodies and are unable to repeat
movements with perfect precision.

Despite the aforementioned difficulties, the resulting
graphs show that the neural network was able to ap-
proximate the training motions relatively well. Due to
human not being able to hold still poses, we expected
slight movement to result in significant approximation
errors, but our experiments showed that the mean error
of neural network approximation ranged between 4.4 to
7 degrees.

5.2 Experiments

The trained neural network weights are used to control
the robot in real-time. Figure 8 shows the tele-operated
robot and the human operator testing the system. Dur-
ing our experiments the user tried to perform a number
of complex movements, such as picking up cardboard
boxes, using the robot’s fist to touch and hit objects,
and by making dynamic movements such as “shadow
boxing”. The user had sufficient control of the robot
to perform these tasks with almost no visible targeting
errors. All movements were perfectly recognisable and
most of the time it was hard to determine errors in the
robot movement. The majority of visible differences were
due to embodiment dissimilarities (e.g. a human being
able to lift his arms higher than the robot because of
motor restrictions). The system suffered from a small
lag on occasions (in order of roughly 0.5 to 1 second),
which was further discovered to be resulting from using
TCP/IP protocol on the robot end rather than UDP. A
video of the results can be found here”. Our approach
provided a reasonable level of control (as demonstrated
in the video). Lastly, the user also attempted to walk,
but was only capable of taking small side-steps as some of
the foot motors were disabled to ensure the robot doesn’t
fall over. The main focus of this work was on the upper
body and we haven’t done much leg training yet.

6 Conclusion

We have constructed a teleoperation system based upon
using machine learning to find relationships between
paired human and robot example motions. From ap-
proximately 10 minutes worth of example paired move-
ments, a time series of motion capture inputs and robot
actuator outputs is used by neural networks and particle
swarm optimisation to find kinematic mapping functions
between the physical pose of the user and the physical

"http://www.youtube.com/watch?v=ggLgel Rw2z4
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