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Abstract. Building large scale social simulations in virtual environ-
ments requires having a large number of virtual agents. Often we need
to simulate hundreds or even thousands of individuals in order to have
a realistic and believable simulation. One of the obvious desires of the
developers of such simulations is to have a high degree of automation in
regards to agent behaviour. The key techniques to provide this automa-
tion are: crowd simulation, planning and utility based approaches. Crowd
simulation algorithms are appropriate for simulating simple pedestrian
movement or for showing group activities, which do not require complex
object use, but are not suitable for simulating complex everyday life,
where agents need to eat, sleep, work, etc. Planning and utility based
approaches remain the most suitable for this situation. In our research
we are interested in developing advanced history and cultural heritage
simulations and have tried to utilise planning and utility based methods
(the most popular one of which is used in the game “The Sims”). Here
we examine pros and cons of each of the two techniques and illustrate the
key lessons that we have learned with a case study focused on developing
a simulation of everyday life in ancient Mesopotamia 5000 B.C.

1 Introduction

Using Virtual Reality for reconstructing sites of high historical or cultural signifi-
cance and showing how these sites were enacted in the past is becoming more and
more popular. 3D modelling helps to visualise historical buildings and artefacts
that at present only remain in the form of significantly damaged architectural
structures or museum exhibits scattered around the world. Populating the re-
constructed 3D environments with virtual agents helps to illustrate how these
buildings and objects were used by people and to highlight the key technological
or cultural aspects of the simulated society.

Supplying such Virtual Reality simulations with virtual agents that are ca-
pable of convincing and historically or culturally authentic behaviour beyond
simple crowd simulation algorithms is difficult and costly. Virtual agents must
be able to play different social roles, adhere to social norms, actively use sur-
rounding objects, interact with other agents and even engage into interactions
with humans. Modern video games are a good illustration in regards to the po-
tential of having such simulations, but the cost of developing video games is very
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high. For example, the estimated cost of developing Crysis 3, one of the popular
modern video games, is $66 Million [5]. Such a level of spending is not feasible
when it comes to research simulations.

In this paper we discuss different techniques that could help to make agent-
based historical, cultural and other kinds of virtual simulations (which we call
“social simulations”) more affordable by automating the process of populating
a virtual environment with a large number of virtual agents. One of the key
research questions that arises with building such social simulations is how to
supply virtual agents with goals and plans for achieving these goals in a be-
lievable and culturally/historically authentic manner? In regards to supplying
agents with complex goals, which can consistently lead to believable behaviour
in a social simulation, one of the key approaches is to develop some sort of a
computational simulation of agent needs (similar to Maslow’s pyramid of needs
[8]) and generate goals in response to a particular need requiring satisfaction.
Each need can be seen as a reservoir that is replenished (satisfied) after perform-
ing the relevant action (e.g. sleeping to reduce fatigue) and depleted in response
to other actions (e.g. walking will increase fatigue).

As for developing plans (sequences of actions that lead to satisfying these
generated goals), there are two popular approaches that game developers and
academics use: AI Planning [7] and utility based methods, the most popular one
of which is used in the game “The Sims” [1]. In our work we have developed a
computational simulation of needs and have applied both utility based methods
and AI planning for making our agents satisfy those. The key objective of this
paper is to share the lessons learned form applying these techniques and explain
what are the pros and cons of both when applied to building social simulations.

The remainder of the paper is structured as follows. In order to facilitate a
reader’s understanding of the discussed techniques we first present an example
scenario related to building a social simulation in Section 2. In Section 3 we
explain how a utility based approach similar to the one used in The Sims can be
used for social simulations. Section 4 explains the use of AI planning for need
satisfaction. Section 5 outlines the results of our comparative study and analyses
the pros and cons of each of the needs satisfaction methods. Finally, Section 6
provides a summary of lessons learned and concluding remarks.

2 Example Scenario: Ancient Mesopotamia 5000 B.C.

To illustrate the issues involved in building social simulations and discuss how
it is possible to automate agent behaviour in those, we suggest to consider the
simulation of everyday life in ancient Mesopotamia around 5000 B.C.1 shown in
Figure 1. For this simulation we have reconstructed 3 small ancient settlements
using the settlement maps produced by the archeologists from [3].

Based on the knowledge obtained from history experts we could design the
following simplified scenario portraying a day of an average citizen: an average

1 Accompanying video is available at: https://youtu.be/5yEF2A7LEL0

54 A. Bogdanovych and T. Trescak 



Fig. 1. Social Simulation Example: Everyday Life in Ancient Mesopotamia 5000 B.C.

agent in our simulation should start its day at around 6AM in the morning. Soon
after waking up the agent would eat breakfast by preparing the food from storage
or obtaining food through work. The agent would eat 4 times a day with intervals
between meals being close to 6 hours. In-between meals the agent would work
to satisfy immediate hunger or comfort. There is hardly any recreation time. If
there is, the agents should explore the city or chat with each other.

The type of work an agent must perform depends on the social role this
agent plays in the simulation. For simplicity, consider a scenario where each of
the agents plays one of the following 4 social roles: Fisher, Baker, Potter and
Shepherd. Figure 2 outlines the key tasks that these agents must perform at
work: milking sheep, making pots, baking bread and fishing.

The first step of building the simulation involved modelling the buildings
and the settlement layout based on the results of archaeological excavations and
information provided by subject matter experts. The next step was to man-
ually design the appearance of the base population of 2 agents. Treating the
appearance of the agents from the base population as genetic code allows to au-
tomatically generate a desired number n of the simulation inhabitants following
the approach in [11]. Given that each of these agents must play one of the afore-
mentioned 4 roles we can either equally allocate the generated agents into the
given 4 roles (n/4 - shepherds, n/4 - potters, n/4 - bakers and n/4 - fishers) or
come up with a way of specifying the role distribution in the simulated society
(e.g. 20% shepherds, 20% potters, 30% bakers and 30% fishers).

The key question this paper tackles is: once an agent has been created and has
been assigned with a particular role how can we make this agent automatically
generate goals and plans, so that it simulates believable behaviour consistent
with the aforementioned scenario?
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Fig. 2. The Four Agent Roles: Shepherd, Potter, Baker, Fisher

3 Utility Based Method: Replicating the AI of The Sims

One of the most popular video games that simulates agent behaviour through
modelling needs is “The Sims”. Due to its commercial nature it was difficult for
us to obtain a detailed explanation of the process agents in The Sims game use to
address their needs, as most of such information is considered a trade secret by
game developers and they are often not interested in sharing it with the public.
In our exploration we had to rely on conference presentations, blogs, videos and
white papers. The most comprehensive formal explanation is available in [1].

The essence of the approach taken by The Sims is that every agent is supplied
with a set of needs. These needs do not decay uniformly, but their decay rate
is determined by functions similar to those shown in the Figure 3. Each of the
needs is represented by a value from the [−100 · · · + 100] interval, where +100
means that the need is 100% satisfied and -100 means that the need is 100%
suppressed. The values for each need decrease over time as per Figure 3 and can
be increased through interactions with objects that can satisfy them.

Fig. 3. Need Decay and Happiness Weights in The Sims [1]

There are no explicit goals that the agents have to generate and then pursue.
Instead, the agents are driven by their desire to improve their mood. The mood
of an agent is simply a sum of all the numeric values for agent needs as: Mood =
Hunger + Energy + Comfort + Social + Bladder + Room + Fun + Hygiene.

Most of the “intelligence” in this game is stored in the objects rather than
in the agents. Every time an agent finishes performing some action in response
to an attempt to improve its mood it recomputes the current mood and then
acts based on the information communicated by the surrounding objects. Some
of the objects are capable of modifying the agent mood, so such objects contin-
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uously broadcast the details of how they can address each of the agent needs.
An example that is relevant to our scenario from Section 2 is shown in Figure 4.

Fig. 4. The Overview of the Agent Architecture

To decide which action to perform next, an agent would compute the poten-
tial mood value using the information about the possible need changes broad-
casted by every object and would then choose to interact with the object that
provides the highest value of the resulting mood. Once the agent approaches an
object and communicates that it wants to interact with it, the object would send
a recipe (in our case a finite state machine) that prescribes what the agent must
do to update its mood in accordance with the broadcasted values.

To avoid inter-agent conflicts in our implementation each agent owns a par-
ticular set of objects and only the owner can can interact with those. In our
scenario from Figure 4, for example, all the objects located in the Shepherd’s
Home are owned by the shepherd agent and cannot be used by othes. There
are also shared objects, which have no owner and can be used by any agent.
An example of a shared object is the pot in the Potter’s Home. This pot can
be used by any agent and would increase the comfort of this agent by +7, but
the supplied finite state machine would request from the agent using it to create
another shared object of type food and leave it in exchange for the pot. Once an
agent commits to interact with an object it can no longer stop the interaction
and it is no longer possible by other agents to interact with this object.

Concerning the scenario from Figure 4, if an agent plays the role of a shepherd
it can satisfy its hunger (+1) and thirst (+2) by interacting with a sheep. Once
it approaches the closest sheep it must follow the actions expressed in the finite
state machine that it supplies. This would involve approaching a pot, carrying the
pot to the sheep, playing the milking animation, playing the drinking animation
and then returning the pot to its original place. This would result in the decay
of energy (-3). Alternatively, if there is milk available in storage this agent could
choose to interact with the corresponding pot that would satisfy the agent’s
hunger (+1) and thirst (+2) with no energy decay. All agents can satisfy their
thirst (+3) by using the shared object “well”, but they will loose some energy (-
3). A baker agent could satisfy its hunger (+5) by interacting with a stove. This
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would involve collecting the wheat in the field, preparing the dough, putting it in
the stove and then eating the bread. Fishers could satisfy hunger (+5) through
a fire place. This object would make them collect their fishing gear, walk to the
boat, board it, play the fishing animation, return back with the fish, cook it on
the fire and then eat it. Potters can not directly satisfy their hunger, but could
only satisfy it if they have stored food in their possession. They can obtain stored
food through trade with agents of other 3 roles. These agents would require pots
from the pot maker to address their comfort (+7) and would trade the food they
produce for pots. The comfort need is addressed by all agents through having
food in storage. The energy need is satisfied through sitting down or sleeping.
The social need is addressed by talking with the closest agent.

4 AI Planning in Social Simulations

An alternative approach to the utility based needs satisfaction is to make agents
generate a goal (e.g. make the value of hunger greater than +50) every time a
given need reaches a critical value (e.g. hunger = 0) and then dynamically build
a plan that can satisfy this goal using AI planning [7]. The key idea behind
planning is to annotate every action an agent is capable of performing with
pre-conditions (in our simulation this is the state the agent must have in order
to perform this action) and post-conditions (how the state of the agent would
change if a particular action is performed). Once the actions are annotated, an
agent can dynamically obtain a sequence of actions that leads to satisfying the
generated goal by performing a search through the action space.

The key traditional benefit of using planning in video games is that the re-
sulting agent behaviour appears diverse and dynamic, because agents can easily
integrate rapid changes in the environment (e.g someone taking away an object
that is necessary for completing a task) and find an alternative if such alter-
native exists. Additionally, game developers are no longer required to manually
design plans (e.g. finite state machines embedded in the game objects) to spec-
ify how particular objects are to be enacted. Instead, the agents are capable of
dynamically building such plans. But those benefits come at a cost of reduced
performance, as every time an agent must make a decision it has to conduct an
exhaustive search for a plan instead of simply executing a finite state machine.

To illustrate the benefits of planning for social simulations Figure 5 shows a
simplified example where an agent with the role “Potter” and whose current state
includes “HasWater” constructs its plan from the list of the following actions:
– FindWater (pre-condition =“NoWater”, post-condition =“HaveWater”)
– Work (pre-condition =“HaveClay”, post-condition =“HavePot”)
– MakeClay (pre-conditon =“WaterInClay, post-condition =“HaveClay”)
– AddWater (pre-condition =“HaveWater, post-condition =“WaterInClay”)
– Trade (pre-conditon =“HavePot”, post-condition =“HaveFood”)

Through analysing pre-conditions and post-conditions of each of these actions
the agent is able to search for a plan that leads to obtaining food through trade
and involves creating a pot and then exchanging it for food. The resulting plan
is: AddWater→MakeClay→Work→Trade→HaveFood. This search starts with
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Fig. 5. PotMaker Planning Example: AddWater → MakeClay → Work → Trade.

the agent generating a goal “HaveFood”. It can then find “Trade” as an action
that has this goal state as a post-condition. This backwards search continues
until the agents finds a sequence of actions that leads from its current state
”HaveWater” to the goal state “HaveFood”. If at some stage the water pot is
removed from the agent’s home its state is updated to ”NoWater” and the pre-
condtion “HaveWater” of the “AddWater” action will not be satisfied, so the
plan for the “HaveFood” goal would need to start from the “FindWater” action.

Due to performance issues in the vast majority of the games where AI plan-
ning is used the actual number of agents that do planning is very small [2]. In
social simulations we need hundreds of agents, so this is a problem, but, many
agents in social simulations would have very similar goals and would frequently
need to repeat similar routines, so there is potential for plan reuse.

There are different ways one can do planning, but the most popular approach
used by the gaming community is the goal-oriented action planning (or GOAP)
[9]. We have modified the classical GOAP implementation to fit our purposes
(e.g. to include dynamic heuristics, allow for cycles in plans, work with real
numbers instead of binary predicates, etc.), but even those optimisations did
not help to reach real-time performance. Moreover, complex agent behaviour was
difficult to structure using the classical form expected by GOAP. As a result,
we have considered the use of Hierarchic Task Networks (HTN) [6]. In our prior
work we have used Electronic Institutions [4], the structure of which adheres
to HTN, as the way of expressing norms in social simulation, so we were able
to combine GOAP and HTN via Electronic Institutions. While an average plan
generation using classical STRIPS (for 22 actions) was around four minutes, with
Electronic Institutions we brought it down to 100 milliseconds. Further details
of integrating Electronic Institutions into our simulations are beyond the scope
of this paper, but curious readers would find further details in [10]. What is
important for this paper is that through integrating Electronic Institutions we
were able to reach real time performance when planning with many agents.

5 Experiments
We have conducted a series of experiments using the scenario described in sec-
tion 2 with the aim to understand the key visual and statistical differences be-
tween AI planning and The Sims approach. These experiments where performed
on an Alienware 7 laptop computer with the screen resolution of 1027x768.

Low performance is one of the key reasons for the limited use of planning in
video games. An acceptable performance measure widely used in games devel-
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opment is frame-rate (how many frames per second (FPS) can be shown during
game play). The higher is the frame-rate the more fluent is the game experience.
It is often considered unacceptable to have the frame-rate lower than 30 FPS.

The frame-rate is dependent on many factors: a number of visible actors,
a number of polygons that must be rendered at a given moment, etc. These
parameters are very specific to each particular game. So, it is difficult to have a
comparison that is beneficial to wider audiences if we were to only do experiments
with our particular game. Therefore, we have conducted most of our experiments
in a simple 2D environment where agents are represented as circles and objects
they interact with represented as cubes. In this way we can eliminate game
specific performance issues that are not related to planning.

Figure 6 shows a graph that represents the relationship between the frame-
rate (vertical axis) and the number of agents (horizontal axis) in the Sims imple-
mentation. As can be seen from this graph, we were able to work with over 4000
agents in a 2D simulation and still have the comfortable frame-rate of 30 FPS.
We have also measured the frame-rate in the 3D gaming environment outlined in
Figure 1. There we had around 350 agents visible to the player at the frame-rate
of 30 FPS. Having 400 agents reduced the frame-rate to 25 FPS.

Fig. 6. Agents Controlled by a Sims like Model: Framerate vs Agent Number

Figure 7 shows the results we were able to achieve in the 2D simulation
using AI Planning. Here we were only able to generate 105 agents and have the
frame-rate about 30 FPS and then it would start to sharply decline. In the 3D
simulation we could only have 50 agents that use planning at 30 FPS.

Fig. 7. Agents Controlled by a Classical Planner: Framerate vs Agent Number

These results were not very encouraging, so we have decided to modify the
planning mechanism of our agents by supplying global plan memory (cache).
This memory is used to routinely store the details about the current state of the
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planning agent, its goal, role and the generated plan. Before generating a new
plan we were then checking whether there is a record in memory that contains
the plan for an agent with the same role, goal and state. If such record exists
then we would execute the recorded plan instead of searching for a new plan.

Fig. 8. Agents Controlled by a Planner with Memory: Framerate vs Agent Number

Figure 8 shows the results of using planning with memory within our 2D
simulation. Unlike video games, social simulations are quite repetitive, so using
plan memory resulted in significant performance improvements. We were able to
achieve the performance of 30 FPS while having 770 agents present in the 2D
simulation and close to 200 agents present in the 3D simulation at 30 FPS.

6 Discussion and Conclusion

We have compared two different approaches to automating agent behaviour in
large scale social simulations. Both approaches relied on first building a compu-
tational model of needs and then having these needs controlling the actions the
agent would choose to perform. The first approach to need satisfaction that we
tested was the utility based method from The Sims game. The benefit of this
method is that it is relatively simple to implement and the resulting performance
is very high, potentially allowing to have thousands of agents in a simulation.
But the key drawbacks of this approach are the following: the behaviour of the
agents appears scripted, it is very difficult to come up with correct values for
need changes that should occur when an agent interacts with an object that
could satisfy them (e.g. Hunger +5 and Energy -7 offered by the fisher’s fire
place). If it is required to portray limited resources in the environment then
The Sims implementation could be associated with believability issues, as lack
of resources might lead to agents not being able to complete their plans and all
resources that they use could be irreversibly lost as the fact of agents obtaining
those cannot be reflected in their state. The Sims approach also has scalability
problems. When adding new objects these numbers must be recomputed across
the board, new finite state machines must be designed to support utilising this
new object and some of the existing state machines might have to be modified if
the use of this object is required in the corresponding plans. Another significant
issue was supporting agent interactions with one another. The Sims approach is
useful when agents act in isolation, but if they have to conduct complex tasks
together it is difficult to have them synchronised without breaking believability.

The use of planning allowed to achieve more believable and emergent be-
haviour and solve the aforementioned synchronisation issues. It was also much
easier to design the system and modify it by adding new objects. But the use
of planning was associated with a significant performance loss. Through various
kinds of optimisation (integrating Electronic Institutions and plan memory) we
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were able to achieve having 770 agents in the 2D simulation running at 30 FPS
and close to 200 agents running in our particular 3D simulation at 30 FPS. There
is a lot of room to optimise our 3D simulation and with improved hardware we
could, of course, generate more agents. We could also overcome the agent num-
ber limitation by using classical gaming strategies like hiding agents when they
are not in the line of sight or by only performing planning for the agents that
the user is currently looking at and use a simpler technique.

Our concluding suggestion would be to certainly focus on planning and work
on strategies to optimise it if your goal is to build a research simulation that is
similar to the scenario described in this paper, where low frame rates are not very
critical and where you can potentially use a powerful super computer for running
the simulation. But if you are building a commercial game that needs hundreds or
thousands of agents running on a personal computer then performance problems
associated with planning would outweigh the believability benefits and it is better
for you to follow The Sims approach to needs satisfaction. Finally, for simulations
with a high degree of agent interaction (e.g. trading, working together) planning
is a better choice due to increased believability and reduced design complexity.
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3. Crüsemann, N., van Ess, M., Hilgert, M., Salje, B.: Uruk. 5000 Jahre Megacity
(2013)

4. Esteva, M.: Electronic Institutions: From Specification to Development. Ph.D. the-
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